Team:Tokyo-NoKoGen
From 2013.igem.org
(252 intermediate revisions not shown) | |||
Line 108: | Line 108: | ||
} | } | ||
- | #title_logo img. | + | #title_logo img.iGEM { |
position: relative; | position: relative; | ||
- | top: | + | top: 50px; |
- | left: | + | left: 40px; |
- | width: | + | width: 150px; |
- | height: | + | height: auto; |
} | } | ||
Line 237: | Line 237: | ||
width: 70px; | width: 70px; | ||
height: 95px; | height: 95px; | ||
- | margin: 93px 20px 0px | + | margin: 93px 20px 0px -2px; |
background: url("https://static.igem.org/mediawiki/2013/9/96/Biobrick28.png") no-repeat 0px 0px; | background: url("https://static.igem.org/mediawiki/2013/9/96/Biobrick28.png") no-repeat 0px 0px; | ||
} | } | ||
Line 245: | Line 245: | ||
width: 70px; | width: 70px; | ||
height: 95px; | height: 95px; | ||
- | margin: 93px 20px 0px | + | margin: 93px 20px 0px -2px; |
background-position: 0px -99px; | background-position: 0px -99px; | ||
} | } | ||
Line 252: | Line 252: | ||
width: 70px; | width: 70px; | ||
height: 95px; | height: 95px; | ||
- | margin: 92px 20px 0px | + | margin: 92px 20px 0px -2px ; |
background: url("https://static.igem.org/mediawiki/2013/c/c9/Biobrick26.png") no-repeat 0px 0px ; | background: url("https://static.igem.org/mediawiki/2013/c/c9/Biobrick26.png") no-repeat 0px 0px ; | ||
background-size: 70px 95px; | background-size: 70px 95px; | ||
Line 298: | Line 298: | ||
width: 70px; | width: 70px; | ||
height: 97px; | height: 97px; | ||
- | margin: 86px 20px 0px | + | margin: 86px 20px 0px -1px; |
background: url("https://static.igem.org/mediawiki/2013/c/c1/Humanpractice28.png") no-repeat 0px 0px; | background: url("https://static.igem.org/mediawiki/2013/c/c1/Humanpractice28.png") no-repeat 0px 0px; | ||
} | } | ||
Line 306: | Line 306: | ||
width: 70px; | width: 70px; | ||
height: 97px; | height: 97px; | ||
- | margin: 86px 20px 0px | + | margin: 86px 20px 0px -1px; |
background-position: 0px -99px; | background-position: 0px -99px; | ||
} | } | ||
Line 313: | Line 313: | ||
width: 70px; | width: 70px; | ||
height: 95px; | height: 95px; | ||
- | margin: 92px 20px 0px | + | margin: 92px 20px 0px -1px ; |
background: url("https://static.igem.org/mediawiki/2013/5/54/Humanpractice26.png") no-repeat 0px 0px ; | background: url("https://static.igem.org/mediawiki/2013/5/54/Humanpractice26.png") no-repeat 0px 0px ; | ||
background-size: 70px 95px; | background-size: 70px 95px; | ||
Line 328: | Line 328: | ||
width: 70px; | width: 70px; | ||
height: 95px; | height: 95px; | ||
- | margin: 93px 20px 0px | + | margin: 93px 20px 0px -2px; |
background: url("https://static.igem.org/mediawiki/2013/5/5e/Achievement28.png") no-repeat 0px 0px; | background: url("https://static.igem.org/mediawiki/2013/5/5e/Achievement28.png") no-repeat 0px 0px; | ||
} | } | ||
Line 336: | Line 336: | ||
width: 70px; | width: 70px; | ||
height: 95px; | height: 95px; | ||
- | margin: 93px 20px 0px | + | margin: 93px 20px 0px -2px; |
background-position: 0px -99px; | background-position: 0px -99px; | ||
} | } | ||
Line 343: | Line 343: | ||
width: 70px; | width: 70px; | ||
height: 95px; | height: 95px; | ||
- | margin: 92px 20px 0px | + | margin: 92px 20px 0px -2px ; |
background: url("https://static.igem.org/mediawiki/2013/5/5a/Achievement26.png") no-repeat 0px 0px ; | background: url("https://static.igem.org/mediawiki/2013/5/5a/Achievement26.png") no-repeat 0px 0px ; | ||
background-size: 70px 95px; | background-size: 70px 95px; | ||
Line 351: | Line 351: | ||
float: left; | float: left; | ||
width:490px; | width:490px; | ||
- | height: | + | height:4000px; |
background: url("https://static.igem.org/mediawiki/2013/a/a5/Header_index_kiso4.png") 0px -250px no-repeat ; | background: url("https://static.igem.org/mediawiki/2013/a/a5/Header_index_kiso4.png") 0px -250px no-repeat ; | ||
} | } | ||
Line 380: | Line 380: | ||
float: left; | float: left; | ||
width:820px; | width:820px; | ||
- | height: | + | height:4000px; |
background: url("https://static.igem.org/mediawiki/2013/a/a5/Header_index_kiso4.png") -490px -250px no-repeat; | background: url("https://static.igem.org/mediawiki/2013/a/a5/Header_index_kiso4.png") -490px -250px no-repeat; | ||
Line 388: | Line 388: | ||
float: left; | float: left; | ||
width: 100px; | width: 100px; | ||
- | height: | + | height: 4000px; |
background: url("https://static.igem.org/mediawiki/2013/a/a5/Header_index_kiso4.png") -1310px -250px no-repeat; | background: url("https://static.igem.org/mediawiki/2013/a/a5/Header_index_kiso4.png") -1310px -250px no-repeat; | ||
} | } | ||
Line 396: | Line 396: | ||
width: 1410px; | width: 1410px; | ||
height: 700px; | height: 700px; | ||
- | background: url( "https://static.igem.org/mediawiki/2013/a/a5/Header_index_kiso4.png") 0px - | + | background: url( "https://static.igem.org/mediawiki/2013/a/a5/Header_index_kiso4.png") 0px -9300px no-repeat; |
} | } | ||
Line 411: | Line 411: | ||
#footer_sponsors li.UI { | #footer_sponsors li.UI { | ||
width:150px; | width:150px; | ||
- | margin: | + | margin: 50px 0px 0px 370px; |
} | } | ||
#footer_sponsors li.CB { | #footer_sponsors li.CB { | ||
width: ; | width: ; | ||
- | margin: | + | margin: 80px 0px 0px 50px; |
} | } | ||
#footer_sponsors li.LN { | #footer_sponsors li.LN { | ||
width:; | width:; | ||
- | margin: | + | margin: 50px 0px 0px 50px; |
} | } | ||
#footer_sponsors li.IR { | #footer_sponsors li.IR { | ||
+ | clear: both; | ||
width:; | width:; | ||
- | margin: | + | margin: 45px 0px 0px 370px; |
+ | } | ||
+ | |||
+ | #footer_sponsors li.Promega { | ||
+ | width:; | ||
+ | margin: 30px 0px 0px 50px; | ||
+ | } | ||
+ | |||
+ | #footer_sponsors li.IDT { | ||
+ | width:; | ||
+ | margin: 55px 0px 0px 50px; | ||
+ | } | ||
+ | |||
+ | #footer_sponsors li.MBL { | ||
+ | width:; | ||
+ | margin: 50px 0px 0px 370px; | ||
} | } | ||
#footer_sponsors li.NK { | #footer_sponsors li.NK { | ||
+ | clear: both; | ||
width:; | width:; | ||
- | margin: | + | margin: 70px 0px 0px 370px; |
} | } | ||
#footer_sponsors li.IK { | #footer_sponsors li.IK { | ||
width:; | width:; | ||
- | margin: | + | margin: 70px 0px 0px 50px; |
} | } | ||
#footer_sponsors li.ST { | #footer_sponsors li.ST { | ||
width:; | width:; | ||
- | margin: | + | margin: 70px 0px 0px 50px; |
} | } | ||
Line 460: | Line 477: | ||
- | <a href="https://2013.igem.org"><img class=" | + | <a href="https://2013.igem.org"><img class="iGEM" src="https://static.igem.org/mediawiki/2013/5/58/IGEM.png"></a> |
</div> | </div> | ||
Line 485: | Line 502: | ||
</div> | </div> | ||
- | + | <div id="index"> | |
- | + | ||
<h1 id="index_title"></h1> | <h1 id="index_title"></h1> | ||
<ul id="contents"> | <ul id="contents"> | ||
- | <a href=" | + | <a href="https://2013.igem.org/Team:Tokyo-NoKoGen/oscillator"><li><a href="#diary"><strong>RNA oscillator</a></strong></li></a> |
- | < | + | <a href="https://2013.igem.org/Team:Tokyo-NoKoGen/scaffold"><li><strong>RNA scaffold</strong></li></a> |
- | + | <a href="https://2013.igem.org/Team:Tokyo-NoKoGen/light"><li><strong>Light sensor</strong></li></a> | |
- | + | <a href="https://2013.igem.org/Team:Tokyo-NoKoGen/modeling"><li><strong>Modeling</strong></li></a> | |
- | + | ||
- | <li><strong></strong></li> | + | |
</ul> | </ul> | ||
</div> | </div> | ||
- | |||
<div id="main"> | <div id="main"> | ||
- | |||
- | + | <img id="mainback" src="https://static.igem.org/mediawiki/2013/3/36/Twinklecoliaaa.PNG"> | |
- | + | ||
- | + | ||
- | + | <BR> | |
+ | <BR> | ||
+ | <BR> | ||
+ | <BR> | ||
+ | <p align=center><font size=7><strong>Introduction</strong></font></p></font> | ||
+ | <BR> | ||
+ | <hr> | ||
+ | <hr size="3" width="(60%)" align="left"noshade> | ||
+ | </hr> | ||
- | |||
+ | <BR> | ||
+ | <p style="text-indent:2em"><font size=5> | ||
+ | We all have a biological clock which controls the periodicity of</p>many physiological functions such as blood pressure, body</p>temperature and</p> concentration of hormones. The systems that generate circadian rhythms</p> are called oscillator. Oscillator has been researched fordeepening our</p> knowledge of circadian rhythms, understanding genetic network and signal</p> transfer.</p> | ||
+ | <BR> | ||
+ | |||
+ | <div style="text-align:center"> | ||
+ | <img src="https://static.igem.org/mediawiki/2013/0/0d/Circadian_rhythm.PNG", height="300", width="450",alt=""> | ||
+ | </div> | ||
+ | <BR> | ||
+ | <div style="text-align:center"><font size=3> | ||
+ | Fig.1 Circadian rhythm</font> | ||
+ | </div> | ||
+ | <p style="text-indent:1em"> | ||
+ | Oscillator is expected to be used for various applications.</p> | ||
+ | <BR> | ||
+ | <p style="text-indent:1em"> | ||
+ | Therefore, desired features of oscillator are:</p> | ||
+ | <p style="text-indent:4em"> | ||
+ | <strong> | ||
+ | 1. Variation in types</strong></p> | ||
+ | <p style="text-indent:4em"> | ||
+ | <strong> | ||
+ | 2. Feasibility in designing and controlling</strong></p> | ||
+ | <BR> | ||
+ | <p style="text-indent:2em"> | ||
+ | However, existing protein oscillator does not satisfy the above requirements.</p> | ||
+ | <img src="https://static.igem.org/mediawiki/2013/9/91/Protein.PNG",height="200", width="200"alt="" style="float:right"> | ||
+ | <p style="text-indent:2em"> | ||
+ | The first difficulty of protein oscillator is the small type of the protein. Because the number of repressor proteins and promoters are limited, the variation of protein oscillator is not many. </p> | ||
+ | <p style="text-indent:2em"> | ||
+ | Another difficulty of protein oscillator is the component, the protein. Protein requires several steps; transcription and translation, protein modification, folding, and degradation. When we want to construct or control such protein oscillator, we have to genetically engineer to change the transcriptional efficiency, translational efficiency and degradation ability. Therefore, it is difficult to design such gene circuits that can express the repressors periodically. </p> | ||
+ | <BR> | ||
+ | <p style="text-indent:4em"><font size=3> | ||
+ | Fig. 2 Steps of protein expression</font></p> | ||
+ | <BR> | ||
+ | <p style="text-indent:2em"> | ||
+ | To satisfy the requirements, we propose the New type of oscillator circuit – <span style="color:#ff0000">RNA oscillator</span>.</p> | ||
+ | |||
+ | <p style="text-indent:2em"> | ||
+ | Whereas there are only a few types of proteins that can be used for the construction of protein oscillator, many kinds of oscillators can be constructed with RNA by changing a few base. Therefore, it will allow us to construct a multiple and orthogonal oscillators.</p> | ||
+ | <p style="text-indent:2em"> | ||
+ | Another advantage is that, although protein has several steps until degradation, RNA has no steps of translation, modification and time-consuming degradation. Therefore, RNA oscillator can be designed and controlled by only changing the transcriptional efficiency and binding ability. It is easy to change the binding ability of RNA because all we have to do is to alter the base, and hence change the strength of base pairs binding.</p> | ||
+ | |||
+ | <img src="https://static.igem.org/mediawiki/2013/5/57/ProteinRNA.PNG",height="200",width="200",alt=""> | ||
+ | |||
+ | <img src="https://static.igem.org/mediawiki/2013/6/61/%E3%82%AD%E3%83%A3%E3%83%97%E3%83%81%E3%83%A3aa.PNG", height="300", width="350", alt="",style="float:right"> | ||
+ | <p style="text-indent:1em"><font size=3> | ||
+ | Fig.3 Steps of protein expression and RNA transcription Fig.4 RNA is easy to modify</font> | ||
+ | <BR> | ||
+ | <BR> | ||
+ | <p style="text-indent:2em"> | ||
+ | Like this, RNA meets the necessary standards for:</p> | ||
+ | |||
+ | <p style="text-indent:4em"> | ||
+ | <strong> | ||
+ | 1. Variation in types</strong></p> | ||
+ | <p style="text-indent:4em"> | ||
+ | <strong> | ||
+ | 2. Feasibility in designing and controlling</strong></p> | ||
+ | <BR> | ||
+ | <p style="text-indent:2em"> | ||
+ | Therefore, it can be used for combination with diverse mechanisms. | ||
+ | For example, we can change output signals from RNA to other ones such as protein with reporter circuit, and control the oscillation with light sensor.</p> | ||
+ | |||
+ | <p style="text-indent:2em"> | ||
+ | In this way, the ability to combine with various mechanisms can be used for controlling complex systems such as drug delivery.</p> | ||
+ | <p style="text-indent:2em"> | ||
+ | We named the E. coli which has this ability <strong>Twinkle.coli</strong> because of its brilliant future. | ||
+ | </p> | ||
+ | <div style="text-align:center"> | ||
+ | <img src="https://static.igem.org/mediawiki/2013/0/0e/Twinklecokikuuuuu.PNG", height="300", width="350", alt=""> | ||
+ | <BR> | ||
+ | <BR> | ||
+ | <BR> | ||
+ | <div style="text-align:center"><font size=3> | ||
+ | Fig.5 Twinkle. coli</font> | ||
+ | </div> | ||
+ | </div> | ||
+ | </p> | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
</div> | </div> | ||
Line 527: | Line 632: | ||
<li class="LN"><a target="_blank" href="http://lne.st/"><img class="LN" src="https://static.igem.org/mediawiki/2013/2/2a/リバネス.png"></a></li> | <li class="LN"><a target="_blank" href="http://lne.st/"><img class="LN" src="https://static.igem.org/mediawiki/2013/2/2a/リバネス.png"></a></li> | ||
<li class="IR"><a target="_blank" href="http://www.ikedarika.co.jp/english/"><img class="IR" src="https://static.igem.org/mediawiki/2013/b/b8/池田理化.gif"></a></li> | <li class="IR"><a target="_blank" href="http://www.ikedarika.co.jp/english/"><img class="IR" src="https://static.igem.org/mediawiki/2013/b/b8/池田理化.gif"></a></li> | ||
+ | <li class="Promega"><a target="_blank" href="http://www.promega.com/"><img class="Progma" src="https://static.igem.org/mediawiki/2013/c/c4/Promega.jpg"></li> | ||
+ | <li class="IDT"><a target="_blank" href="http://www.idtdna.com/site"><img class="IDT" src="https://static.igem.org/mediawiki/2013/7/71/IDT.png"></li> | ||
+ | <li class="MBL"><a target="_blank" href="http://www.mbl.co.jp/e/index.html"><img class="MBL" src="https://static.igem.org/mediawiki/2013/8/85/MBL.gif"></li> | ||
+ | |||
<li class="NK"><a target="_blank" href="http://www.tuat.ac.jp/en/index.html"><img class ="NK"src="https://static.igem.org/mediawiki/2013/7/76/東京農工大学.png"></a></li> | <li class="NK"><a target="_blank" href="http://www.tuat.ac.jp/en/index.html"><img class ="NK"src="https://static.igem.org/mediawiki/2013/7/76/東京農工大学.png"></a></li> | ||
<li class="ST"><a target="_blank" href="http://www.tuat.ac.jp/~tanpaku/"><img src="https://static.igem.org/mediawiki/2013/5/5a/早出・津川研究室.png" ></a></li> | <li class="ST"><a target="_blank" href="http://www.tuat.ac.jp/~tanpaku/"><img src="https://static.igem.org/mediawiki/2013/5/5a/早出・津川研究室.png" ></a></li> |
Latest revision as of 03:40, 28 September 2013
Introduction
We all have a biological clock which controls the periodicity of
many physiological functions such as blood pressure, bodytemperature and concentration of hormones. The systems that generate circadian rhythms are called oscillator. Oscillator has been researched fordeepening our knowledge of circadian rhythms, understanding genetic network and signal transfer.Oscillator is expected to be used for various applications.
Therefore, desired features of oscillator are:
1. Variation in types
2. Feasibility in designing and controlling
However, existing protein oscillator does not satisfy the above requirements.
The first difficulty of protein oscillator is the small type of the protein. Because the number of repressor proteins and promoters are limited, the variation of protein oscillator is not many.
Another difficulty of protein oscillator is the component, the protein. Protein requires several steps; transcription and translation, protein modification, folding, and degradation. When we want to construct or control such protein oscillator, we have to genetically engineer to change the transcriptional efficiency, translational efficiency and degradation ability. Therefore, it is difficult to design such gene circuits that can express the repressors periodically.
Fig. 2 Steps of protein expression
To satisfy the requirements, we propose the New type of oscillator circuit – RNA oscillator.
Whereas there are only a few types of proteins that can be used for the construction of protein oscillator, many kinds of oscillators can be constructed with RNA by changing a few base. Therefore, it will allow us to construct a multiple and orthogonal oscillators.
Another advantage is that, although protein has several steps until degradation, RNA has no steps of translation, modification and time-consuming degradation. Therefore, RNA oscillator can be designed and controlled by only changing the transcriptional efficiency and binding ability. It is easy to change the binding ability of RNA because all we have to do is to alter the base, and hence change the strength of base pairs binding.
Fig.3 Steps of protein expression and RNA transcription Fig.4 RNA is easy to modify
Like this, RNA meets the necessary standards for:
1. Variation in types
2. Feasibility in designing and controlling
Therefore, it can be used for combination with diverse mechanisms. For example, we can change output signals from RNA to other ones such as protein with reporter circuit, and control the oscillation with light sensor.
In this way, the ability to combine with various mechanisms can be used for controlling complex systems such as drug delivery.
We named the E. coli which has this ability Twinkle.coli because of its brilliant future.