Team:BIT/Modeling

From 2013.igem.org

(Difference between revisions)
 
(5 intermediate revisions not shown)
Line 185: Line 185:
font-size: medium;
font-size: medium;
color: #CFF;
color: #CFF;
 +
        text-align: justify;
line-height: 25px;
line-height: 25px;
padding-top: 10px;
padding-top: 10px;
Line 203: Line 204:
         <tr>
         <tr>
           <td width="713"><div><a id="a1" href="https://2013.igem.org/wiki/index.php?title=Team:BIT/Modeling&action=edit"></a></div></td>
           <td width="713"><div><a id="a1" href="https://2013.igem.org/wiki/index.php?title=Team:BIT/Modeling&action=edit"></a></div></td>
-
           <td width="167"><div><a id="a2" href="https://2013.igem.org/Team:BIT"></a></div></td>
+
           <td width="167"><div><a id="a2" href="http://www.igem.org/Main_Page"></a></div></td>
           <td width="130"><div><a id="a3" href="https://2013.igem.org/wiki/index.php?title=Special:UserLogout&returnto=Main_Page"></a></div></td>
           <td width="130"><div><a id="a3" href="https://2013.igem.org/wiki/index.php?title=Special:UserLogout&returnto=Main_Page"></a></div></td>
         </tr>
         </tr>
Line 251: Line 252:
         </tr>
         </tr>
    <tr>
    <tr>
-
      <td class="t2">&nbsp;&nbsp;&nbsp;&nbsp;We have established a model to match the data of our previous work. On the whole, we designed a model which can be divided into three parts.<br>
+
      <td class="t2"><strong>Introduction</storng></td>
-
&nbsp;&nbsp;&nbsp;&nbsp;The first part is called Low-starting model. We believe that <i>chrB</i> protein can still can still express itself even though there is no chromate at all. So we follow this idea, and write the following equation:<br>
+
</tr>
-
<img src="https://static.igem.org/mediawiki/2013/8/8c/BIT_Modeling1.jpg" width="787" height="124"><br>
+
<tr>
-
&nbsp;&nbsp;&nbsp;&nbsp;In the above formula, Mr is the mRNA concentration of <i>chrB</i> protein, R is the concentration of <i>chrB</i> protein, u is the specific growth rate of E.coli. G is the concentration of <i>chrB</i> gene. And<img src="https://static.igem.org/mediawiki/2013/8/8b/BIT_Modeling2.jpg" width="121" height="56">are the velocity constants of the formation of substances presented by subscript. In addition,<img src="https://static.igem.org/mediawiki/2013/0/0c/BIT_Modeling3.jpg" width="106" height="50">are the corresponding degradation rate constants. Finally, L1 is the ratio of the promoter occupied by RNA polymerase.<br>
+
<td class="t2">&nbsp;&nbsp;&nbsp;&nbsp;Our biological system connects the biosensors and the reporters. The different concentration of antibiotics can result in different intension of fluorescences.So if we can predict the concentration with the detected intension of fluorescences. The problem is how to get the relationship of them in math.<br>
-
&nbsp;&nbsp;&nbsp;&nbsp;The second part is named <i><strong>Cr-transportation model</strong></i>. We want to use our biological device to measure the environmental chromate concentration. Since chromate is familiar with the sulfate radical, its transportation is also familiar with sulfate radical.<br>
+
&nbsp;&nbsp;&nbsp;&nbsp;In addition, noise exits in the system and the electronic device. That is the reason we make the amplifier and the controller. Through those parts, we can get the value of prediction more accurately.<br>
-
<img src="https://static.igem.org/mediawiki/2013/b/b8/BIT_Modeling4.jpg" width="197" height="56"><br>
+
&nbsp;&nbsp;&nbsp;&nbsp;What’s more, on the condition that the intension of fluorescence is constant, to make sure our system can adjust to different standard of concentration, we can predict the IPTG which needs adding based on our model. In other word, we can give a value of IPTG which needs adding to decide if the antibiotics is superscalar in any standards.</td>
-
&nbsp;&nbsp;&nbsp;&nbsp;C1 is the concentration of intracellular chromate. C2 is the extracellular concentration of chromate and C3 is the saturated concentration of chromium ion transport. Kc is chromium ion transport rate constant. p is the cell density.<br>
+
</tr>
-
&nbsp;&nbsp;&nbsp;&nbsp;The last, but the most important, part is called <i><strong>Strong-starting model</strong></i>. Firstly, our device expresses <i>chrB</i> protein by the first model. So there will be a little <i>chrB</i> protein though the promoter has low-starting ability at this moment. Once <i>chrB</i> protein presents, it will chelate chromium ions, and the chelate compound will activate or promote the promoter to form <i>chrB</i> protein.<br>
+
<tr>
-
&nbsp;&nbsp;&nbsp;&nbsp;The facilitative process can be divided into two reactions.<br>
+
      <td class="t2"><strong>Calculation</strong></td>
-
&nbsp;&nbsp;&nbsp;&nbsp;In the first reaction, chromium ions combine with the chrB protein, forming an inducer.<br>
+
</tr>
-
<img src="https://static.igem.org/mediawiki/2013/f/f2/BIT_Modeling5.jpg" width="601" height="47"><br>
+
<tr>
-
&nbsp;&nbsp;&nbsp;&nbsp;In the second reaction, the inducer combines with chrB promoter, pchrB.<br>
+
      <td class="t2">&nbsp;&nbsp;&nbsp;&nbsp;In this part, we list our calculating progress. Because of the same principle, we only take the tetracycline part as an example.<br>
-
<img src="https://static.igem.org/mediawiki/2013/8/81/BIT_Modeling6.jpg" width="698" height="56"><br>
+
&nbsp;&nbsp;&nbsp;&nbsp;At first, let’s look at our tetracycline biosensor:<br>
-
&nbsp;&nbsp;&nbsp;&nbsp;Kd and Kp are the degrees of dissociation of the above two complexes, respectively, and n is the Hill coefficient which indicates the induction strength.<br>
+
<img src="https://static.igem.org/mediawiki/2013/8/8c/BIT_Modeling1.jpg"><br>
-
&nbsp;&nbsp;&nbsp;&nbsp;We assume that Ca means the concentration of <i>Crn-chrB</i>, Cb means the concentration of <i>chrB</i> protein, Cp means the concentration of the free promoter of <i>chrB</i>, and Ct means the total concentration of the promoter of <i>chrB</i>. So we assume the following:<br>
+
&nbsp;&nbsp;&nbsp;&nbsp;We use Df  represent the concentration of DNA that does not combine with tetR protein; and X-D represent the concentration of DNA bonded by tetR protein; Dt represent the total concentration of promoter of DNA; X represent the concentration of tetR protein.<br>
-
<img src="https://static.igem.org/mediawiki/2013/e/e0/BIT_Modeling7.jpg" width="785" height="285"><br>
+
&nbsp;&nbsp;&nbsp;&nbsp;According to law of conservation of mass:</br>
-
&nbsp;&nbsp;&nbsp;&nbsp;M represents the strong-starting condition <i>chrB</i> mRNA concentration; G’ represents the concentration of <i>chrB</i> gene. R’ represents the strong-starting condition free <i>chrB</i> protein concentration. And KR’ means the new constant of rate. Finally a formula on the right side of the first representative <i>chrB</i> protein synthesis, the third means <i>chrB</i> protein in combination with chromium ions, led to a decline in unbonded protein concentration.<br>
+
<img src="https://static.igem.org/mediawiki/2013/8/8b/BIT_Modeling2.jpg"><br>
-
&nbsp;&nbsp;&nbsp;&nbsp;Obviously, KR is combined with chromium ions, <i>chrB</i> protein concentration is directly related to, temporarily need further data to determine the relationship between, the idea is there:<br>
+
&nbsp;&nbsp;&nbsp;&nbsp;Among them, kon represent the compound X-D generation rate and koff represent the compound X-D dissociation rate.<br>
-
&nbsp;&nbsp;&nbsp;&nbsp;For example:<img src="https://static.igem.org/mediawiki/2013/d/dd/BIT_Modeling8.jpg" width="224" height="45">, where q is the proportionality coefficient.
+
&nbsp;&nbsp;&nbsp;&nbsp;If<img src="https://static.igem.org/mediawiki/2013/0/0c/BIT_Modeling3.jpg"<br>
-
 
+
&nbsp;&nbsp;&nbsp;&nbsp;Then:<img src="https://static.igem.org/mediawiki/2013/b/b8/BIT_Modeling4.jpg" <br><br>
 +
&nbsp;&nbsp;&nbsp;&nbsp;When location of D is free, the RNA polymerase could combine with promoter PltetO1, and start transcription. The transcription rate of free promoter PltetO1 can described by the biggest transcription rate β. As we know, β is changed along with the changes of DNA sequence, the location of RNA combine to and other facts.<br>
 +
&nbsp;&nbsp;&nbsp;&nbsp;The activity of promoter=<br>
 +
<img src="https://static.igem.org/mediawiki/2013/f/f2/BIT_Modeling5.jpg"><br>
 +
&nbsp;&nbsp;&nbsp;&nbsp;Now, let’s look at tetracycline. Just as our PPT shows, tetracycline is an inducer.<br>
 +
&nbsp;&nbsp;&nbsp;&nbsp;X-Tx represent the concentration of X bonded with Tx, and Tx is the concentration of inducer-tetracycline. Xt is the total concentration of tetR protein.<br>
 +
<img src="https://static.igem.org/mediawiki/2013/8/81/BIT_Modeling6.jpg"><br>
 +
&nbsp;&nbsp;&nbsp;&nbsp;And if we use X* represent the tetR protein not bond with tetracycline<br>
 +
<img src="https://static.igem.org/mediawiki/2013/e/e0/BIT_Modeling7.jpg"><br>
 +
&nbsp;&nbsp;&nbsp;&nbsp;But in fact, there is a tetR dimer that will prohibit the gene GFP.<br>
 +
&nbsp;&nbsp;&nbsp;&nbsp;So, we should change equation (1.1.6) into the following equation:<br>
 +
<img src="https://static.igem.org/mediawiki/2013/d/dd/BIT_Modeling8.jpg"><br>
 +
&nbsp;&nbsp;&nbsp;&nbsp;Similarly, by the Hill equation:<br>
 +
<img src="https://static.igem.org/mediawiki/2013/e/e4/BIT_Modeling9.jpg"><br>
 +
&nbsp;&nbsp;&nbsp;&nbsp;Considering the more specific model, we use the Monod-Changeux model. And L represents the bigger probability X present than X*.<br>
 +
<img src="https://static.igem.org/mediawiki/2013/0/05/BIT_Modeling10.jpg"><br>
 +
&nbsp;&nbsp;&nbsp;&nbsp;So far, we can write the equation of transcription:<br>
 +
&nbsp;&nbsp;&nbsp;&nbsp;At this point, the input function describe transcription rate as input function of the concentration of inducer Tx<br>
 +
<img src="https://static.igem.org/mediawiki/2013/0/0b/BIT_Modeling11.jpg"><br>
 +
&nbsp;&nbsp;&nbsp;&nbsp;Now, it’s time to quantify the expression of GFP. G is the concentration of GFP protein, α represent the depression coefficient.<br>
 +
<img src="https://static.igem.org/mediawiki/2013/2/20/BIT_Modeling12.jpg"><br>
 +
&nbsp;&nbsp;&nbsp;&nbsp;Here, Tx =0.5 Txout, Xt>>Kd, because tetracycline is a kind of fat soluble antibiotic, it should diffuse freely until the concentrations between the intracellular and extracellular cell are equal.<br>
 +
&nbsp;&nbsp;&nbsp;&nbsp;Equation (1.1.15) can be roughly write to (1.1.17) :<br>
 +
<img src="https://static.igem.org/mediawiki/2013/6/64/BIT_Modeling13.jpg"><br>
 +
&nbsp;&nbsp;&nbsp;&nbsp;Because Xt, Kd are about constant, we make K’=Xt/Kd,<br>
 +
&nbsp;&nbsp;&nbsp;&nbsp;So,<img src="https://static.igem.org/mediawiki/2013/1/1f/BIT_Modeling14.jpg"><br>
 +
&nbsp;&nbsp;&nbsp;&nbsp;At the same time, we can make M=β/K’ because both of β、K’ are constants.<br>
 +
&nbsp;&nbsp;&nbsp;&nbsp;So:<img src="https://static.igem.org/mediawiki/2013/4/4b/BIT_Modeling15.jpg"><br>
 +
&nbsp;&nbsp;&nbsp;&nbsp;If Tx is far smaller than Kx,<br>
 +
&nbsp;&nbsp;&nbsp;&nbsp;then<img src="https://static.igem.org/mediawiki/2013/6/66/BIT_Modeling16.jpg"><br>
 +
&nbsp;&nbsp;&nbsp;&nbsp;So<img src="https://static.igem.org/mediawiki/2013/b/b5/BIT_Modeling17.jpg"><br>
 +
&nbsp;&nbsp;&nbsp;&nbsp;So, when C→0, or α is big enough,<br>
 +
<img src="https://static.igem.org/mediawiki/2013/1/1b/BIT_Modeling18.jpg"><br>
 +
&nbsp;&nbsp;&nbsp;&nbsp;If Tx is far bigger than Kx, with the same method, we can easily get the following equation:          G=P’*Txout^n<br>
 +
&nbsp;&nbsp;&nbsp;&nbsp;As we know, n=2,<br>
 +
&nbsp;&nbsp;&nbsp;&nbsp;So<img src="https://static.igem.org/mediawiki/2013/2/25/BIT_Modeling19.jpg"><br>
 +
&nbsp;&nbsp;&nbsp;&nbsp;As you can see, the relationship between the expression intensity and the concentration of Tetracycline does obey equation (1.1.22)firstly, then obey equation(1.1.23).<br>
 +
&nbsp;&nbsp;&nbsp;&nbsp;Here is the result:<br>
 +
<img src="https://static.igem.org/mediawiki/2013/9/99/BIT_Modeling20.jpg"><br>
 +
&nbsp;&nbsp;&nbsp;&nbsp;Compared to our experiment data:<br>
 +
<img src="https://static.igem.org/mediawiki/2013/9/9f/BIT_Modeling21.jpg"><br>
 +
&nbsp;&nbsp;&nbsp;&nbsp;So combined with equations(1.1.22) and(1.1.23), our model is suitable for our biosensor!<br>
</td>
</td>
Line 297: Line 339:
       <tr>
       <tr>
         <td>&nbsp;</td>
         <td>&nbsp;</td>
-
         <td> E-mail: yifei0114@bit.edu.cn</td>
+
         <td> E-mail:<a href="mailto:yifei0114@bit.edu.cn"> yifei0114@bit.edu.cn</a></td>
         <td>&nbsp;</td>
         <td>&nbsp;</td>
       </tr>
       </tr>

Latest revision as of 07:30, 28 October 2013

iGEM BIT

     
  Beijing Institute of Technology | 5 South Zhongguancun Street, Haidian DistrictBeijing, China 100081  
  E-mail: yifei0114@bit.edu.cn  
  Beijing Institute of Technology © 2013 Privacy Policy