Team:Tokyo-NoKoGen/light

From 2013.igem.org

(Difference between revisions)
(Created page with "Introduction<BR> Right sensor<BR> 1. YF1/ FixJ<BR> YF1/ FixJ system is blue light (480 nm) sensing system. YF1 is a fusion protein, heme-binding PAS sensor domain of FixL from Br...")
 
(61 intermediate revisions not shown)
Line 1: Line 1:
-
Introduction<BR>
+
<html>
-
Right sensor<BR>
+
 
-
1. YF1/ FixJ<BR>
+
    <head>
-
YF1/ FixJ system is blue light (480 nm) sensing system. YF1 is a fusion protein, heme-binding PAS sensor domain of FixL from Bradyrhizobium japonicum(FixL) and the LOV blue light sensor domain of Bacillus subtilis YtvA(YtvA). The Histidine kinase YF1 employs a light-oxygen-voltage, blue light photosensor domain. FixJ is YF1’s cognate response regulator. In the absence of blue light, YF1 phosphorylates FixJ, and phosphorylated FixJ drives robust gene expression from the FixK2 promoter(Ref. 1,2).
+
 
 +
<style type ='text/css'>
 +
 
 +
 
 +
#contents2 {
 +
position: relative;
 +
width: 100px;
 +
top: 340px;
 +
left: 220px;
 +
 
 +
}
 +
#globalWrapper { 
 +
width: 1410px;
 +
height:100%;
 +
}
 +
 
 +
#content {
 +
background-color: transparent;
 +
border: none;
 +
padding: 0;
 +
margin: 0;
 +
margin-top: -23px;
 +
width: 100%;
 +
overflow: hidden;
 +
height:100%;
 +
}
 +
 
 +
#bodyContent {
 +
border: none;
 +
padding:0;
 +
margin:0;
 +
width:1410px;
 +
height:100%;
 +
}
 +
 
 +
#top-section {
 +
height: 18px;
 +
margin: 0px;
 +
margin-top: 5px;
 +
margin-left: auto;
 +
margin-right: auto;
 +
margin-bottom: 0 !important;
 +
padding:0;
 +
border: none;
 +
font-size: 10px;
 +
}
 +
 
 +
#p-logo {
 +
overflow:hidden;
 +
display: none;
 +
}
 +
 
 +
#search-controls {
 +
display:none;
 +
}
 +
 
 +
#footer-box {
 +
width: 1410px;
 +
height: ;
 +
}
 +
 
 +
#footer {
 +
border: none;
 +
width: 1410px; 
 +
}
 +
 
 +
.firstHeading {
 +
display: none;
 +
}
 +
 
 +
#f-list a {
 +
color: #333;
 +
font-size: 10px;
 +
}
 +
 
 +
#f-list a:hover {
 +
color: #666;
 +
}
 +
 
 +
.printfooter {
 +
display: none;
 +
}
 +
 
 +
h3#siteSub {
 +
display: none;
 +
}
 +
 
 +
#contentSub {
 +
display: none;
 +
}
 +
 
 +
p:first-child {
 +
display: none;
 +
}
 +
 
 +
h1,h2,h3 {
 +
border: none;
 +
}
 +
 
 +
#wrapper {
 +
font-size: 12pt;
 +
font-family: "Comic Sans MS","MS明朝";
 +
width:1410px;
 +
height:100%;
 +
margin:auto ;
 +
}
 +
 
 +
#title_logo {
 +
float: left;
 +
width:705px;
 +
height:250px;
 +
background :url("https://static.igem.org/mediawiki/2013/d/d6/Header_index_kiso5.png") ;
 +
}
 +
 
 +
#title_logo img.iGEM {
 +
position: relative;
 +
top: 50px;
 +
left: 40px;
 +
width: 150px;
 +
height: auto;
 +
}
 +
 
 +
#title_logo img.title {
 +
position: relative;
 +
top:20px;
 +
left:40px;
 +
width:600px;
 +
height:200px;
 +
}
 +
 
 +
#mymenubar {
 +
float: left;
 +
width: 705px;
 +
height: 250px;
 +
background: url("https://static.igem.org/mediawiki/2013/d/d6/Header_index_kiso5.png") -705px 0px no-repeat;
 +
}
 +
 
 +
#mymenubar table,tbody,tr {
 +
background: transparent;
 +
}
 +
 
 +
#mymenubar table td div.home,home1 {
 +
width: 70px;
 +
height: 95px;
 +
}
 +
 
 +
#mymenubar table td span.home {
 +
float: left;
 +
width: 70px;
 +
height: 95px;
 +
margin: 90px 20px 0px 20px;
 +
background: url("https://static.igem.org/mediawiki/2013/9/96/Home28.png") no-repeat 0px 0px;
 +
}
 +
 
 +
#mymenubar table td span.home:hover {
 +
float: left;
 +
width: 70px;
 +
height: 95px;
 +
margin: 90px 20px 0px 20px;
 +
background-position: 0px -99px;
 +
}
 +
 
 +
 
 +
#mymenubar table div.home1 {
 +
width: 70px;
 +
height: 95px;
 +
margin: 92px 20px 0px 20px ;
 +
background: url("https://static.igem.org/mediawiki/2013/1/18/Home26.png") no-repeat 0px 0px ;
 +
background-size: 70px 95px;
 +
}
 +
 
 +
#mymenubar table td span.project {
 +
display: block;
 +
width: 70px;
 +
height: 95px;
 +
}
 +
 
 +
#mymenubar table td.project {
 +
float: left;
 +
width: 70px;
 +
height: 95px;
 +
margin: 88px 20px 0px 0px;
 +
background: url("https://static.igem.org/mediawiki/2013/f/f5/Project28.png") no-repeat 0px 0px;
 +
}
 +
 
 +
#mymenubar table td.project:hover {
 +
float: left;
 +
width: 70px;
 +
height: 95px;
 +
margin: 88px 20px 0px 0px;
 +
background-position: 0px -99px;
 +
}
 +
 
 +
#mymenubar table div.project1 {
 +
width: 70px;
 +
height: 95px;
 +
margin: 92px 20px 0px 0px ;
 +
background: url("https://static.igem.org/mediawiki/2013/f/f9/Project26.png") no-repeat 0px 0px ;
 +
background-size: 70px 95px;
 +
}
 +
 
 +
 
 +
#mymenubar table td span.team {
 +
display: block;
 +
width: 70px;
 +
height: 95px;
 +
}
 +
 
 +
#mymenubar table td.team {
 +
float: left;
 +
width: 70px;
 +
height: 95px;
 +
margin: 91px 20px 0px 0px;
 +
background: url("https://static.igem.org/mediawiki/2013/b/ba/Team28.png") no-repeat 0px 0px;
 +
}
 +
 
 +
#mymenubar table td.team:hover {
 +
float: left;
 +
width: 70px;
 +
height: 95px;
 +
margin: 91px 20px 0px 0px;
 +
background-position: 0px -98px;
 +
}
 +
 
 +
#mymenubar table div.team1 {
 +
width: 70px;
 +
height: 95px;
 +
margin: 92px 20px 0px 0px ;
 +
background: url("https://static.igem.org/mediawiki/2013/8/8e/Team26.png") no-repeat 0px 0px ;
 +
background-size: 70px 95px;
 +
}
 +
 
 +
 
 +
#mymenubar table td span.biobrick {
 +
display: block;
 +
width: 70px;
 +
height: 95px;
 +
}
 +
 
 +
#mymenubar table td.biobrick {
 +
float: left;
 +
width: 70px;
 +
height: 95px;
 +
margin: 93px 20px 0px -2px;
 +
background: url("https://static.igem.org/mediawiki/2013/9/96/Biobrick28.png") no-repeat 0px 0px;
 +
}
 +
 
 +
#mymenubar table td.biobrick:hover {
 +
float: left;
 +
width: 70px;
 +
height: 95px;
 +
margin: 93px 20px 0px -2px;
 +
background-position: 0px -99px;
 +
}
 +
 
 +
#mymenubar table div.biobrick1 {
 +
width: 70px;
 +
height: 95px;
 +
margin: 92px 20px 0px -2px ;
 +
background: url("https://static.igem.org/mediawiki/2013/c/c9/Biobrick26.png") no-repeat 0px 0px ;
 +
background-size: 70px 95px;
 +
}
 +
 
 +
 
 +
#mymenubar table td span.notebook {
 +
display: block;
 +
width: 70px;
 +
height: 95px;
 +
}
 +
 
 +
#mymenubar table td.notebook  {
 +
float: left;
 +
width: 70px;
 +
height: 95px;
 +
margin: 95px 20px 0px 0px;
 +
background: url("https://static.igem.org/mediawiki/2013/7/78/Notebook28.png") no-repeat 0px 0px;
 +
}
 +
 
 +
#mymenubar table td.notebook:hover {
 +
float: left;
 +
width: 70px;
 +
height: 95px;
 +
margin: 95px 20px 0px 0px;
 +
background-position: 0px -100px;
 +
}
 +
 
 +
#mymenubar table div.notebook1 {
 +
width: 70px;
 +
height: 95px;
 +
margin: 92px 20px 0px 0px ;
 +
background: url("https://static.igem.org/mediawiki/2013/8/8d/Notebook26.png") no-repeat 0px 0px ;
 +
background-size: 70px 95px;
 +
}
 +
 
 +
#mymenubar table td span.humanpractice {
 +
display: block;
 +
width: 70px;
 +
height: 97px;
 +
}
 +
 
 +
#mymenubar table td.humanpractice  {
 +
float: left;
 +
width: 70px;
 +
height: 97px;
 +
margin: 86px 20px 0px -1px;
 +
background: url("https://static.igem.org/mediawiki/2013/c/c1/Humanpractice28.png") no-repeat 0px 0px;
 +
}
 +
 
 +
#mymenubar table td.humanpractice:hover {
 +
float: left;
 +
width: 70px;
 +
height: 97px;
 +
margin: 86px 20px 0px -1px;
 +
background-position: 0px -99px;
 +
}
 +
 
 +
#mymenubar table div.humanpractice1 {
 +
width: 70px;
 +
height: 95px;
 +
margin: 92px 20px 0px -1px ;
 +
background: url("https://static.igem.org/mediawiki/2013/5/54/Humanpractice26.png") no-repeat 0px 0px ;
 +
background-size: 70px 95px;
 +
}
 +
 
 +
#mymenubar table td span.achievement {
 +
display: block;
 +
width: 70px;
 +
height: 95px;
 +
}
 +
 
 +
#mymenubar table td.achievement  {
 +
float: left;
 +
width: 70px;
 +
height: 95px;
 +
margin: 93px 20px 0px -2px;
 +
background: url("https://static.igem.org/mediawiki/2013/5/5e/Achievement28.png") no-repeat 0px 0px;
 +
}
 +
 
 +
#mymenubar table td.achievement:hover {
 +
float: left;
 +
width: 70px;
 +
height: 95px;
 +
margin: 93px 20px 0px -2px;
 +
background-position: 0px -99px;
 +
}
 +
 
 +
#mymenubar table div.achievement1 {
 +
width: 70px;
 +
height: 95px;
 +
margin: 92px 20px 0px -2px ;
 +
background: url("https://static.igem.org/mediawiki/2013/5/5a/Achievement26.png") no-repeat 0px 0px ;
 +
background-size: 70px 95px;
 +
}
 +
 
 +
#index {
 +
float: left;
 +
width:490px;
 +
height:9100px;
 +
background: url("https://static.igem.org/mediawiki/2013/d/d6/Header_index_kiso5.png") 0px -250px no-repeat ;
 +
}
 +
 
 +
 
 +
#index img.logo {
 +
position: relative;
 +
top:20px;
 +
left:230px;
 +
width:150px;
 +
height:150px;
 +
}
 +
 
 +
#index_title {
 +
position: relative;
 +
top:40px;
 +
left:230px;
 +
}
 +
 
 +
#contents {
 +
position: relative;
 +
width:100px;
 +
top:240px;
 +
left:220px;
 +
}
 +
 
 +
#main {
 +
float: left;
 +
width:820px;
 +
height:9100px;
 +
background: url("https://static.igem.org/mediawiki/2013/d/d6/Header_index_kiso5.png") -490px -250px no-repeat;
 +
 
 +
}
 +
 
 +
#space {
 +
float: left;
 +
width: 100px;
 +
height: 9100px;
 +
background: url("https://static.igem.org/mediawiki/2013/d/d6/Header_index_kiso5.png") -1310px -250px no-repeat;
 +
}
 +
 
 +
#footerr {
 +
clear: both;
 +
width: 1410px;
 +
height: 900px;
 +
background: url("https://static.igem.org/mediawiki/2013/d/d6/Header_index_kiso5.png") 0px -9300px no-repeat;
 +
}
 +
 
 +
#footer_sponsors ul {
 +
margin-left: 300px;
 +
}
 +
 
 +
#footer_sponsors li {
 +
float: left;
 +
list-style-type: none;
 +
height: 70px;
 +
}
 +
 
 +
#footer_sponsors li.UI {
 +
width:150px;
 +
margin: 50px 0px 0px 370px;
 +
}
 +
 
 +
#footer_sponsors li.CB {
 +
width: ;
 +
margin: 80px 0px 0px 50px;
 +
}
 +
 
 +
#footer_sponsors li.LN {
 +
width:;
 +
margin: 50px 0px 0px 50px;
 +
}
 +
 
 +
#footer_sponsors li.IR {
 +
clear: both;
 +
width:;
 +
margin: 45px 0px 0px 370px;
 +
}
 +
 
 +
#footer_sponsors li.Promega {
 +
width:;
 +
margin: 30px 0px 0px 50px;
 +
}
 +
 
 +
#footer_sponsors li.IDT {
 +
width:;
 +
margin: 55px 0px 0px 50px;
 +
}
 +
 
 +
#footer_sponsors li.MBL {
 +
width:;
 +
margin: 50px 0px 0px 370px;
 +
}
 +
 
 +
#footer_sponsors li.NK {
 +
clear: both;
 +
width:;
 +
margin: 70px 0px 0px 370px;
 +
}
 +
 
 +
#footer_sponsors li.IK {
 +
width:;
 +
margin: 70px 0px 0px 50px;
 +
}
 +
 
 +
#footer_sponsors li.ST {
 +
width:;
 +
margin: 70px 0px 0px 50px;
 +
}
 +
 
 +
</style>
 +
 
 +
 
 +
          <title>Team:Tokyo-NoKoGen - 2013.igem.org</title>
 +
         
 +
          <link rel="stylesheet" type="text/css" href="Tokyo-NoKoGen.css">
 +
 +
    </head>
 +
 
 +
    <body>
 +
   
 +
          <div id="wrapper">
 +
         
 +
              <div id="title_logo"> 
 +
                   
 +
     
 +
                    <a href="https://2013.igem.org"><img class="iGEM" src="https://static.igem.org/mediawiki/2013/5/58/IGEM.png"></a> 
 +
              </div>
 +
 
 +
              <div id="mymenubar">
 +
             
 +
                    <table>
 +
                    <tbody>
 +
                        <tr>
 +
                        <td class="home"><a href="https://2013.igem.org/Team:Tokyo-NoKoGen"><span class="home"></span></a></td>
 +
                       
 +
                        <td class="project1"><div class="project1"></div></td>
 +
                       
 +
                        <td class="team"><a href="https://2013.igem.org/Team:Tokyo-NoKoGen/Team"><span class="team"></span></a></td>
 +
                       
 +
                        <td class="biobrick"><a href="https://2013.igem.org/Team:Tokyo-NoKoGen/Parts"><span class="biobrick"></span></a></td>
 +
                       
 +
                        <td class="notebook"><a href="https://2013.igem.org/Team:Tokyo-NoKoGen/Notebook"><span class="notebook"></span></a></td>
 +
                       
 +
                        <td class="humanpractice"><a href="https://2013.igem.org/Team:Tokyo-NoKoGen/Humanpractice"><span class="humanpractice"></span></a></td>
 +
                       
 +
                        <td class="achievement"><a href="https://2013.igem.org/Team:Tokyo-NoKoGen/Achievement"><span class="achievement"></span></a></td>
 +
                    </tbody>
 +
                    </table> 
 +
 +
              </div>
 +
 
 +
              <div id="index">
 +
                   
 +
                   
 +
                    <h1 id="index_title"></h1>
 +
            <ul id="contents">
 +
                <li><a href="#Introduction"><strong>Introduction</strong></a></li>
 +
                                <li><a href="#Objective"><strong>Objective</strong></a></li>
 +
                                <li><a href="#Method"><strong>Method</strong></a>
 +
                                    <ul>
 +
                                        <li><a href="#-Design">-Design</a></li>
 +
                                        <li><a href="#-Parts construction">-Parts construction</a></li>
 +
                    </ul>
 +
                                </li>
 +
                                <li><a href="#-Evaluation"><strong>-Evaluation</strong></a>
 +
                                    <ul>
 +
                                        <li><a href="#Result">Result</a></li>
 +
                    </ul>
 +
                                </li>
 +
                <li><a href="#Future work"><strong>Future work</strong></a></li>
 +
                               
 +
               
 +
            </ul>
 +
 
 +
<ul id="contents2">
 +
                                <a href="https://2013.igem.org/Team:Tokyo-NoKoGen/oscillator"><li>RNA oscillator</li></a>
 +
                                <a href="https://2013.igem.org/Team:Tokyo-NoKoGen/scaffold"><li>RNAScaffold</li></a>
 +
                                <a href="https://2013.igem.org/Team:Tokyo-NoKoGen/light"><li>Light sensor</li></a>
 +
                                <a href="https://2013.igem.org/Team:Tokyo-NoKoGen/modeling"><li>Modeling</li></a>
 +
                                <a href="https://2013.igem.org/Team:Tokyo-NoKoGen/rhodopsin"><li>Improving a BioBrick part - Rhodopsin</li></a>
 +
                            </ul>
 +
 
 +
              </div>
 +
 
 +
              <div id="main">
 +
 +
<font size=5>
 +
 
<BR>
<BR>
 +
<p align=center><font size=7><strong>Light sensor</strong></font></p>
<BR>
<BR>
-
2. Rhodopsin<BR> 
+
<hr>
-
Halophilic archaea, such as Halobacterium salinarum and Natronobacterium pharaonis (N. pharaonis) show phototaxis by responding to changes in light color and intensity using receptors called sensory rhodopsin I and II (SRI and SRII). The SR proteins are seven-transmembrane retinylidene photoreceptors, which transmits blue light signal (λmax 487 nm) to their corresponding transducers HtrI and HtrII respectively. signals to Htr proteins via helix-helix interaction. Htr protein consists of two transmembrane helices and a cytoplasmic methyl-accepting and His-Kinase domain, and belongs to histidine kinase / phosphoreregulator two-component system for regulating cells’ flagellar motors for phototaxis (Ref. 3,4).
+
<hr size="3" width="(60%)" align="left"noshade>
 +
</hr>
 +
<BR>                 
 +
<font size=6 id="Introduction"><strong>Introduction</strong></font>
<BR>
<BR>
<BR>
<BR>
<BR>
<BR>
-
Objective<BR>
+
<h3>1. YF1/ FixJ</h3>
 +
 
 +
<BR><BR>
 +
 
 +
<p style="line-height:110%">
 +
YF1/ FixJ system is a blue light (480 nm) sensing system. YF1 is a fusion protein, heme-binding PAS sensor domain of FixL from <I>Bradyrhizobium japonicum</I>(FixL) and the LOV blue light sensor domain of <I>Bacillus subtilis</I> YtvA(YtvA). The Histidine kinase YF1 employs a light-oxygen-voltage, blue light photosensor domain. FixJ is YF1’s cognate response regulator. In the absence of blue light, YF1 phosphorylates FixJ, and phosphorylated FixJ drives robust gene expression from the FixK2 promoter(Ref. 1,2,3).
 +
</p>
 +
 
 +
<BR><BR>
 +
<img src=https://static.igem.org/mediawiki/2013/8/88/%E3%82%AD%E3%83%A3%E3%83%97%E3%83%81%E3%83%A316.PNG>
 +
 
 +
<BR><BR>
 +
 
 +
<h3>2. Rhodopsin</h3>
 +
 
 +
<BR><BR>
 +
 
 +
<p style="line-height:110%">
 +
Halophilic archaea, such as <I>Halobacterium salinarum</I> and<I> Natronobacterium pharaonis (N. pharaonis)</I> show phototaxis by responding to changes in light color and intensity using receptors called sensory rhodopsin I and II (SRI and SRII). The SR proteins are seven-transmembrane retinylidene photoreceptors, which transmits blue light signal (λmax 487 nm) to their corresponding transducers HtrI and HtrII respectively. signals to Htr proteins via helix-helix interaction. Htr protein consists of two transmembrane helices and a cytoplasmic methyl-accepting and His-Kinase domain, and belongs to histidine kinase / phosphoreregulator two-component system for regulating cells’ flagellar motors for phototaxis (Ref. 4,5).
 +
</p>
 +
<BR>
 +
<BR>
 +
<img src=https://static.igem.org/mediawiki/2013/3/39/%E3%82%AD%E3%83%A3%E3%83%97%E3%83%81%E3%83%A317.PNG>
 +
 
 +
<BR><BR>
 +
 
 +
<BR><p style="line-height:110%">
 +
<font size=6 id="Objective"><strong>Objective</strong></font>
 +
 
 +
<BR><BR><BR>
 +
 
 Reguration of taRNA expression by light sensor protein<BR>
 Reguration of taRNA expression by light sensor protein<BR>
 +
</p>
<BR>
<BR>
<BR>
<BR>
<BR>
<BR>
-
Method<BR>
+
<font size=6 id="Method"><strong>Method</strong></font>
-
-Design<BR>
+
 
-
We construct HHRs containing RBS is downstream of the Pconst promoter (low), and taRNA which binds HHR and inactivates HHR’s self-cleaving activity is on downstream of PompC or Pfixk2 promoter. Under dark condition, taRNA is expressed and inactivates HHR’s self-cleaving activity. On the other hand, under blue light condition, taRNA isn’t expressed and HHR self-cleaves. Becouse of HHR self-cleaving, GFP’s RBS is exposed and GFP is expressed. <BR>
+
<BR><BR><BR>
 +
 
 +
<font size=5 id="-Design"><strong>-Design</strong></font>
 +
 
<BR>
<BR>
-
-Parts construction<BR>
+
<p style="line-height:110%">
-
1.) BioBrick part BBa_K769003 (Tokyo-NoKoGen2012) which consists of a chimeric sensory rhodopsin and its cognate transducer from N. pharaonis and the histidine kinase domain of EnvZ from E. coli, that is fused with HHR connecting with GFP (BBa_K1053004(Tokyo-NoKoGen2013)) or HHR* connecting with GFP (BBa_K1053005(Tokyo-NoKoGen2013)) by using Overlap PCR. <BR>
+
We construct HHRs containing RBS downstream of the P<sub>const</sub> promoter (low), and taRNA which binds HHR and inactivates HHR’s self-cleaving activity is placed downstream of P<sub>ompC</sub> or P<sub>fixk2</sub> promoter. Under dark condition, taRNA is expressed and inactivates HHR’s self-cleaving activity. On the other hand, under blue light condition, taRNA isn’t expressed and HHR self-cleaves. Becouse of HHR self-cleaving, GFP’s RBS is exposed and GFP is expressed. <BR>
-
2.) The PCR products were gel purified and digested with EcoRⅠ and PstⅠ. The digested products were ligated into pSB1A3 vector.
+
</p>
-
3.) Constructed plasmids were transformed into E.coli DH5α.<BR>
+
<BR>
<BR>
-
-Evaluation<BR>
+
<BR>
 +
<font size=5 id="-Parts construction"><strong>-Parts construction</strong></font>
 +
<BR>
 +
<BR>
 +
<p style="line-height:110%">
 +
1. YF1/ FixJ
 +
 
 +
<BR><BR>
 +
 
 +
1.) BioBrick part BBa_K1053210 (Tokyo-NoKoGen2013) is fused with HHR connecting with GFP (BBa_K1053004(Tokyo-NoKoGen2013)) or HHR* connecting with GFP (BBa_K1053005(Tokyo-NoKoGen2013)) by using Overlap PCR.
 +
 
 +
<BR><BR>
 +
 
 +
2.) The PCR products were gel purified and digested with <I>Xba</I>Ⅰ and <I>Pst</I>Ⅰ. The digested products were ligated into pSB1A3 vector.(Fig. 1)<BR><BR>
 +
 
 +
3.) Constructed plasmids were transformed into <I>E.coli</I> DH5α.
 +
</P>
 +
 
 +
<BR><BR><BR>
 +
 
 +
<img src=https://static.igem.org/mediawiki/2013/2/29/%E3%82%AD%E3%83%A3%E3%83%97%E3%83%81%E3%83%A33.PNG>
 +
<BR>Fig. 1 pSB1A3 – P<sub>const.</sub> – YF1/FixJ - P<sub>fixk2</sub> – TR(12)- HHR - GFP - DT<BR><BR><BR><BR>
 +
<img src=https://static.igem.org/mediawiki/2013/5/51/%E3%82%AD%E3%83%A3%E3%83%97%E3%83%81%E3%83%A34.PNG><BR>
 +
Fig. 2  pSB1A3- P<sub>const.</sub> – YF1/FixJ - P<sub>fixk2</sub> – TR(12)- HHR - GFP - DT
 +
<BR>
 +
<BR>
 +
<BR>
 +
<BR>
 +
<p style="line-height:110%">
 +
2. Rhodopsin
 +
 
 +
<BR><BR>
 +
 
 +
1.) BioBrick part BBa_K769003 (Tokyo-NoKoGen2012) which consists of a chimeric sensory rhodopsin and its cognate transducer from <I>N. pharaonis</I> and the histidine kinase domain of EnvZ from <I>E. coli</I>, that is fused with HHR connecting with GFP (BBa_K1053004(Tokyo-NoKoGen2013)) or HHR* connecting with GFP (BBa_K1053005(Tokyo-NoKoGen2013)) by using Overlap PCR.
 +
 
 +
<BR><BR>
 +
 
 +
2.) The PCR products were gel purified and digested with <I>Eco</I>RⅠ and <I>Pst</I>Ⅰ. The digested products were ligated into pSB1A3 vector.(Fig. 3)
 +
 
 +
<BR><BR>
 +
 
 +
3.) Constructed plasmids were transformed into <I>E.coli</I> DH5α.
 +
 
 +
<BR><BR><BR><BR>
 +
 
 +
<img src=https://static.igem.org/mediawiki/2013/e/e0/%E3%82%AD%E3%83%A3%E3%83%97%E3%83%81%E3%83%A37.PNG><BR>
 +
Fig.3  pSB1A3 - P<sub>const.</sub> - SRⅡ- HtrⅡ- EnvZ - P<sub>ompC</sub> - HHR - GFP - DT<BR><BR><BR><BR>
 +
<img src=https://static.igem.org/mediawiki/2013/3/35/%E3%82%AD%E3%83%A3%E3%83%97%E3%83%81%E3%83%A38.PNG><BR>
 +
Fig.4  pSB1A3 - P<sub>const.</sub> - SRⅡ- HtrⅡ- EnvZ - P<sub>ompC</sub> - HHR* - GFP - DT<BR><BR><BR><BR>
 +
</p>
 +
 
 +
 
 +
<BR>
 +
<BR>
 +
<font size=6 id="-Evaluation"><strong>Evaluation</strong></font>
 +
 
 +
<BR><BR><BR><BR>
 +
 
 +
<p style="line-height:110%">
YF1/ FixJ<BR>
YF1/ FixJ<BR>
-
1.) Construct made in –Parts construction- was used to transform into E.coli DH5α.<BR>
+
1.) Construct made in –Parts construction- was used to transform into <I>E.coli</I> DH5α.
-
2.) The transformants were pre-cultured in 3 mL LB medium overnight at 37 degrees celsius, under dark condition.<BR>
+
 
-
3.) 450 μL of pre-cultures were inoculated into 3 mL LB medium inside and incubated either under dark or blue light conditions. OD595 and GFP fluorescence intensity were measured at certain time.<BR>
+
<BR><BR><BR>
<BR><BR><BR>
-
Result<BR><BR><BR><BR>
 
-
Future Work<BR>
+
2.) The transformants were pre-cultured in 3 mL LB medium overnight at 37 degrees celsius, under dark condition.
-
We want to synchronize oscillation cycle with Twinkle.coli by light sensor protein.<BR>
+
 
 +
<BR><BR><BR>
 +
 
 +
3.) 450 μL of pre-cultures were inoculated into 3 mL LB medium inside and incubated either under dark or blue light conditions. OD595 and GFP fluorescence intensity were measured at certain time.(Fig. 1)<BR><BR><BR>
 +
4.) We evaluated P<sub>const.</sub> – taR12- P<sub>const.</sub> (low) – YF1/ FixJ – P<sub>fixk2</sub> – HHR(Fig. 6).<BR><BR>
 +
<img src=https://static.igem.org/mediawiki/2013/3/37/%E3%82%AD%E3%83%A3%E3%83%97%E3%83%81%E3%83%A313.PNG><BR>
 +
Fig. 6  P<sub>const.</sub> – taR12- P<sub>const.</sub> (low) – YF1/ FixJ – P<sub>fixk2</sub> - HHR<BR><BR>
 +
<p style="line-height:110%">
 +
We estimate in light GFP is expressed by HHR’s self cleavage and in dark GFP isn’t expressed by taRNA’s expression. If HHR’s active site is mutated, GFP isn’t expressed.
 +
The GFP fluorescence intensity was taken after main culture for 12 h by Plate Reader in this evaluation method.<BR>
 +
</p>
 +
 
 +
 
 +
</p>
<BR>
<BR>
 +
<img src=https://static.igem.org/mediawiki/2013/e/e8/Parts.jpg>
 +
<BR><BR><BR>
 +
<font size=5 id="Result"><strong>Result</strong></font>
 +
<BR><BR>
 +
<p style="line-height:110%">
 +
There is no clear difference of light and dark condition of HHR-GFPuv or HHR*-GFPuv.<BR>
 +
The cause of this result is that excitation light of GFP and YF1 is almost the same.<BR>
 +
</p>
 +
<img src=https://static.igem.org/mediawiki/2013/b/b5/%E3%82%AD%E3%83%A3%E3%83%97%E3%83%81%E3%83%A39.PNG>
 +
 +
<BR><BR>
 +
 +
Result 1  Evaluation of transformed <I>E.coli</I> under the light or dark condition.
 +
<BR><BR>
<BR>
<BR>
 +
<p style="line-height:110%">
 +
If HHR’s active site isn’t mutated difference between in light or dark is observed. This result is suggested that in light taRNA is expressed and HHR’s auto cleavage is inhibited.<BR>
 +
RNA oscillator’s result is difference between taRNA’s existence or absence isn’t observed. We think that this difference is caused by difference between P<sub>const.</sub>(low) and P<sub>bad.</sub><BR>
 +
</P>
 +
 +
<img src=https://static.igem.org/mediawiki/2013/c/c8/%E3%82%AD%E3%83%A3%E3%83%97%E3%83%81%E3%83%A310.PNG>
 +
 +
<BR><BR>
 +
 +
Result 2  Evaluation of transformed <I>E. coli</I> under the light or dark condition.
 +
<BR><BR><BR>
 +
<BR><BR><BR><BR>
 +
 +
<font size=6 id="Future work"><strong>Future work</strong></font>
<BR>
<BR>
 +
<p style="line-height:110%">
 +
We want to evaluate P<sub>const.</sub> - Yf1/FixJ - P<sub>fixk2</sub>- TR(12)- HHR- GFP- DT and P<sub>fixk2</sub> - taR12 - P<sub>const.</sub>(low) TR(12)- HHR- GFP- P<sub>const.</sub>- YF1/ FixJ by changing main culture time and changing evaluation method again.<BR>
 +
We want to synchronize oscillation cycle with <I>Twinkle. coli</I> by light sensor protein in the future.<BR>
 +
</p>
 +
<BR>
 +
<BR>
 +
<BR>
 +
<p style="line-height:110%">
Reference<BR>
Reference<BR>
-
[1] J. Mol. Biol.(2009) 385, 1433-1444<BR>
+
[1] <I>J. Mol. Biol.</I>(2009) 385, 1433-1444<BR>
-
[2] J. Mol. Biol. (2012) 416, 534-542<BR>
+
[2] <I>J. Mol. Biol. </I>(2012) 416, 534-542<BR>
-
[3] Bacteriology (1998) 180, 5251-5255<BR>
+
[3] <I>Bacteriology </I>(1998) 180, 5251-5255<BR>
-
[4] Xue-Nong Zhang et al. (1999) The specificity of interaction of archaeal transducers with their cognate sensory rhodopsins is determined by their transmembrane helices, Proc. Natl. Acad. Sci. USA <BR>
+
[4] Xue-Nong Zhang <I>et al.</I> (1999) The specificity of interaction of archaeal transducers with their cognate sensory rhodopsins is determined by their transmembrane helices, Proc. Natl. Acad. Sci. USA <BR>
-
[5] Wouter D. Hoff et al. (1997) Molecular mechanism of photosignaling by archaeal sensory rhodopsin, Anmu. Rev. Biophys. Biomol. Struct.<BR>
+
[5] Wouter D. Hoff <I>et al.</I> (1997) Molecular mechanism of photosignaling by archaeal sensory rhodopsin, Anmu. Rev. Biophys. Biomol. Struct.<BR>
 +
 
 +
</p></font>
 +
 
 +
 
 +
 
 +
</div>
 +
 
 +
 
 +
              <div id="space">
 +
 
 +
              </div>
 +
 
 +
 
 +
              <div id="footerr">
 +
                    <ul id="footer_sponsors">
 +
                        <li class="UI"><a target="_blank" href="http://www.ultizyme.jp/"><img class="UI" src="https://static.igem.org/mediawiki/2013/4/47/アルティザイム・インターナショナル.jpg" ></a></li>
 +
                        <li class="CB"><a target="_blank" href="http://www.cosmobio.co.jp/index_e.asp"><img class="CB" src="https://static.igem.org/mediawiki/2013/f/fa/コスモバイオ.png"></a></li>
 +
                        <li class="LN"><a target="_blank" href="http://lne.st/"><img class="LN" src="https://static.igem.org/mediawiki/2013/2/2a/リバネス.png"></a></li>
 +
                        <li class="IR"><a target="_blank" href="http://www.ikedarika.co.jp/english/"><img class="IR" src="https://static.igem.org/mediawiki/2013/b/b8/池田理化.gif"></a></li>
 +
                        <li class="Promega"><a target="_blank" href="http://www.promega.com/"><img class="Progma" src="https://static.igem.org/mediawiki/2013/c/c4/Promega.jpg"></li>
 +
                        <li class="IDT"><a target="_blank" href="http://www.idtdna.com/site"><img class="IDT" src="https://static.igem.org/mediawiki/2013/7/71/IDT.png"></li>
 +
                        <li class="MBL"><a target="_blank" href="http://www.mbl.co.jp/e/index.html"><img class="MBL" src="https://static.igem.org/mediawiki/2013/8/85/MBL.gif"></li>
 +
 
 +
                        <li class="NK"><a target="_blank" href="http://www.tuat.ac.jp/en/index.html"><img class ="NK"src="https://static.igem.org/mediawiki/2013/7/76/東京農工大学.png"></a></li>
 +
                        <li class="ST"><a target="_blank" href="http://www.tuat.ac.jp/~tanpaku/"><img src="https://static.igem.org/mediawiki/2013/5/5a/早出・津川研究室.png" ></a></li>
 +
                        <li class="IK"><a target="_blank" href="http://www.tuat.ac.jp/~kakusan/index.html"><img src="https://static.igem.org/mediawiki/2013/8/87/池袋研究室.png"></a></li>
 +
              </div>
 +
 
 +
 
 +
          </div>
 +
             
 +
    </body>
 +
 
 +
</html>

Latest revision as of 04:02, 28 September 2013

Team:Tokyo-NoKoGen - 2013.igem.org


Light sensor





Introduction


1. YF1/ FixJ



YF1/ FixJ system is a blue light (480 nm) sensing system. YF1 is a fusion protein, heme-binding PAS sensor domain of FixL from Bradyrhizobium japonicum(FixL) and the LOV blue light sensor domain of Bacillus subtilis YtvA(YtvA). The Histidine kinase YF1 employs a light-oxygen-voltage, blue light photosensor domain. FixJ is YF1’s cognate response regulator. In the absence of blue light, YF1 phosphorylates FixJ, and phosphorylated FixJ drives robust gene expression from the FixK2 promoter(Ref. 1,2,3).





2. Rhodopsin



Halophilic archaea, such as Halobacterium salinarum and Natronobacterium pharaonis (N. pharaonis) show phototaxis by responding to changes in light color and intensity using receptors called sensory rhodopsin I and II (SRI and SRII). The SR proteins are seven-transmembrane retinylidene photoreceptors, which transmits blue light signal (λmax 487 nm) to their corresponding transducers HtrI and HtrII respectively. signals to Htr proteins via helix-helix interaction. Htr protein consists of two transmembrane helices and a cytoplasmic methyl-accepting and His-Kinase domain, and belongs to histidine kinase / phosphoreregulator two-component system for regulating cells’ flagellar motors for phototaxis (Ref. 4,5).






Objective


 Reguration of taRNA expression by light sensor protein




Method


-Design

We construct HHRs containing RBS downstream of the Pconst promoter (low), and taRNA which binds HHR and inactivates HHR’s self-cleaving activity is placed downstream of PompC or Pfixk2 promoter. Under dark condition, taRNA is expressed and inactivates HHR’s self-cleaving activity. On the other hand, under blue light condition, taRNA isn’t expressed and HHR self-cleaves. Becouse of HHR self-cleaving, GFP’s RBS is exposed and GFP is expressed.



-Parts construction

1. YF1/ FixJ

1.) BioBrick part BBa_K1053210 (Tokyo-NoKoGen2013) is fused with HHR connecting with GFP (BBa_K1053004(Tokyo-NoKoGen2013)) or HHR* connecting with GFP (BBa_K1053005(Tokyo-NoKoGen2013)) by using Overlap PCR.

2.) The PCR products were gel purified and digested with XbaⅠ and PstⅠ. The digested products were ligated into pSB1A3 vector.(Fig. 1)

3.) Constructed plasmids were transformed into E.coli DH5α.





Fig. 1 pSB1A3 – Pconst. – YF1/FixJ - Pfixk2 – TR(12)- HHR - GFP - DT




Fig. 2 pSB1A3- Pconst. – YF1/FixJ - Pfixk2 – TR(12)- HHR - GFP - DT



2. Rhodopsin

1.) BioBrick part BBa_K769003 (Tokyo-NoKoGen2012) which consists of a chimeric sensory rhodopsin and its cognate transducer from N. pharaonis and the histidine kinase domain of EnvZ from E. coli, that is fused with HHR connecting with GFP (BBa_K1053004(Tokyo-NoKoGen2013)) or HHR* connecting with GFP (BBa_K1053005(Tokyo-NoKoGen2013)) by using Overlap PCR.

2.) The PCR products were gel purified and digested with EcoRⅠ and PstⅠ. The digested products were ligated into pSB1A3 vector.(Fig. 3)

3.) Constructed plasmids were transformed into E.coli DH5α.




Fig.3 pSB1A3 - Pconst. - SRⅡ- HtrⅡ- EnvZ - PompC - HHR - GFP - DT




Fig.4 pSB1A3 - Pconst. - SRⅡ- HtrⅡ- EnvZ - PompC - HHR* - GFP - DT





Evaluation



YF1/ FixJ
1.) Construct made in –Parts construction- was used to transform into E.coli DH5α.


2.) The transformants were pre-cultured in 3 mL LB medium overnight at 37 degrees celsius, under dark condition.


3.) 450 μL of pre-cultures were inoculated into 3 mL LB medium inside and incubated either under dark or blue light conditions. OD595 and GFP fluorescence intensity were measured at certain time.(Fig. 1)


4.) We evaluated Pconst. – taR12- Pconst. (low) – YF1/ FixJ – Pfixk2 – HHR(Fig. 6).


Fig. 6 Pconst. – taR12- Pconst. (low) – YF1/ FixJ – Pfixk2 - HHR

We estimate in light GFP is expressed by HHR’s self cleavage and in dark GFP isn’t expressed by taRNA’s expression. If HHR’s active site is mutated, GFP isn’t expressed. The GFP fluorescence intensity was taken after main culture for 12 h by Plate Reader in this evaluation method.





Result

There is no clear difference of light and dark condition of HHR-GFPuv or HHR*-GFPuv.
The cause of this result is that excitation light of GFP and YF1 is almost the same.



Result 1 Evaluation of transformed E.coli under the light or dark condition.


If HHR’s active site isn’t mutated difference between in light or dark is observed. This result is suggested that in light taRNA is expressed and HHR’s auto cleavage is inhibited.
RNA oscillator’s result is difference between taRNA’s existence or absence isn’t observed. We think that this difference is caused by difference between Pconst.(low) and Pbad.



Result 2 Evaluation of transformed E. coli under the light or dark condition.






Future work

We want to evaluate Pconst. - Yf1/FixJ - Pfixk2- TR(12)- HHR- GFP- DT and Pfixk2 - taR12 - Pconst.(low) TR(12)- HHR- GFP- Pconst.- YF1/ FixJ by changing main culture time and changing evaluation method again.
We want to synchronize oscillation cycle with Twinkle. coli by light sensor protein in the future.




Reference
[1] J. Mol. Biol.(2009) 385, 1433-1444
[2] J. Mol. Biol. (2012) 416, 534-542
[3] Bacteriology (1998) 180, 5251-5255
[4] Xue-Nong Zhang et al. (1999) The specificity of interaction of archaeal transducers with their cognate sensory rhodopsins is determined by their transmembrane helices, Proc. Natl. Acad. Sci. USA
[5] Wouter D. Hoff et al. (1997) Molecular mechanism of photosignaling by archaeal sensory rhodopsin, Anmu. Rev. Biophys. Biomol. Struct.