Team:UC-Santa Cruz/Notebook

From 2013.igem.org

(Difference between revisions)
(Blanked the page)
 
Line 1: Line 1:
-
{{:Team:UC-SantaCruz_Template}}
 
-
 
-
 
-
<p>
 
-
    <strong>
 
-
        2013 UCSC IGEM TEAM Biofilm Membrane Notebook.
 
-
    </strong>
 
-
</p>
 
-
<p>
 
-
    The primary goal of the Biofilm Membrane team was to produce a high-density monolayer biofilm. A monolayer biofilm structure is critical to the function of
 
-
    the biomachine as the overall goal of the project is to move salt across a membrane, producing potable water. Caulobacter Crescentus (C. crescentus), is a
 
-
    polar body bacteria that forms high density monolayer biofilms and has been well characterized to support its use in biotechnological applications. The
 
-
    biofilm forming capabilities of a strain of C. crescentus (CB15) have been well characerized by a group at Stanford University whose work we have cited.
 
-
    CB15 was obtained from the Standford lab for the purpose of this project.
 
-
</p>
 
-
    <p>
 
-
        <strong>Week 1: To prepare materials that will be used for future experiment.</strong>
 
-
    </p>
 
-
<p>
 
-
    8/15
 
-
</p>
 
-
<p>
 
-
    <strong>Peptone Yeast Extract (PYE) Protocol</strong>
 
-
</p>
 
-
<p>
 
-
    (for preparation of one Liter)
 
-
</p>
 
-
<p>
 
-
    <strong>Aim</strong>
 
-
    : To make 1 Liter of PYE growth medium for Caulobacter
 
-
</p>
 
-
<p>
 
-
    <strong>Materials</strong>
 
-
    :
 
-
</p>
 
-
<p>
 
-
    Bacto Peptone 0.2% approx. 2g lot# 1194403
 
-
</p>
 
-
<p>
 
-
    Yeast Extract 0.1% approx. 1g lot# 1307388 vat# 288620
 
-
</p>
 
-
<p>
 
-
    MgSO4 1mM 0.247g EMD#MX0070-1 lot# uk09FZEMS
 
-
</p>
 
-
<p>
 
-
    CaCl2 o.5mM 0.074g lot# A0141702020
 
-
</p>
 
-
<p>
 
-
    1 Liter flask
 
-
</p>
 
-
<p>
 
-
    milliHQ water
 
-
</p>
 
-
<p>
 
-
    autoclave
 
-
</p>
 
-
<p>
 
-
    <strong>Procedure</strong>
 
-
    :
 
-
</p>
 
-
<p>
 
-
    1) Combine 2g of bacto peptone, 1g of yeast extract, 0.24624g of MgSO4, and 0.07350g of CaCl2 in a sterile 1 Liter flask.
 
-
</p>
 
-
<p>
 
-
    2) Fill flask with millliHQ water to 1 Liter mark on flask.
 
-
</p>
 
-
<p>
 
-
    3) Homogenize mixture by shaking/stiring.
 
-
</p>
 
-
<p>
 
-
    4) Sterilize mixture using the autoclave on fluid cycle for 40 minutes.
 
-
</p>
 
-
<p>
 
-
    5) Let cool, cover, and store in refrigerator.
 
-
</p>
 
-
 
-
    <p>
 
-
      Refer to
 
-
  http://labs.mcdb.lsa.umich.edu/labs/maddock/protocols/media/antibiotics.html
 
-
       
 
-
    </a>
 
-
    for Antibiotics Concentations.
 
-
</p>
 
-
<p align="right">
 
-
    4/9/93
 
-
</p>
 
-
 
-
[[File:Antibiotic.png]]
 
-
 
-
<p>
 
-
    <strong>Notes:</strong>
 
-
</p>
 
-
<p>
 
-
    Storage: All antibiotics should be stored at 4° C, Tet should be stored at -20° C.
 
-
</p>
 
-
<p>
 
-
    Tet is also light sensitive. Store stock solutions &amp; plates in the dark.
 
-
</p>
 
-
<p>
 
-
    Prep: All antibiotics should be dissolved in sterile distilled water unless otherwise indicated.
 
-
</p>
 
-
<p>
 
-
    Use oxytetracycline for Caulobacter strains.
 
-
</p>
 
-
<p>
 
-
<br\><br\>
 
-
    8/15
 
-
</p>
 
-
<p>
 
-
    Innoculating Ecoli PxYFPC-2
 
-
</p>
 
-
<p>
 
-
    <strong>Aim:</strong>
 
-
    Picking Ecoli from a plate to get PxYPFC-2 plasmids
 
-
</p>
 
-
<p>
 
-
    <strong>Materials:</strong>
 
-
</p>
 
-
<p>
 
-
    -Ecoli PxYFPC-2 plate from Stanford
 
-
</p>
 
-
<p>
 
-
    -LB growth medium (made by Aaron)
 
-
</p>
 
-
<p>
 
-
    -Kanamycin ( stock conc. 50mg/ml)
 
-
</p>
 
-
<p>
 
-
    -Inoculating Loop
 
-
</p>
 
-
<p>
 
-
    -Flame
 
-
</p>
 
-
<p>
 
-
    <strong></strong>
 
-
</p>
 
-
<p>
 
-
    <strong>Procedure:</strong>
 
-
</p>
 
-
<p>
 
-
    1. Set up a flame
 
-
</p>
 
-
<p>
 
-
    2. Sterilize the loop by heating it over the flame
 
-
</p>
 
-
<p>
 
-
    3. Using the inoculating loop, pick a colony
 
-
</p>
 
-
<p>
 
-
    4. Dip loop into sterile LB broth (100ml)
 
-
</p>
 
-
<p>
 
-
    5. Store in shaking incubator at -37<sup>o</sup>C for 1 night
 
-
</p>
 
-
<p>
 
-
    8/19 Agar Plates
 
-
</p>
 
-
<p>
 
-
    <strong>Aim:</strong>
 
-
    To make PYE + antibiotic agar plates
 
-
</p>
 
-
<p>
 
-
    <strong>Materials:</strong>
 
-
</p>
 
-
<p>
 
-
    -Petri dishes
 
-
</p>
 
-
<p>
 
-
    -PYE (500ml- this is enough to make 15-18 plates)
 
-
</p>
 
-
<p>
 
-
    -Kanamycin/Gentamycin
 
-
</p>
 
-
<p>
 
-
    -Agar (13-15 g per liter) [Lot # 2107450]
 
-
</p>
 
-
<p>
 
-
    -1 Liter Erlenmeyer Flask
 
-
</p>
 
-
<p>
 
-
    <strong></strong>
 
-
</p>
 
-
<p>
 
-
    <strong>Procedure:</strong>
 
-
</p>
 
-
<p>
 
-
    1. Add 7.5g of agar and 500mL of PYE to a 1L flask.
 
-
</p>
 
-
<p>
 
-
    2. Homogenize mixture using a stirring bar.
 
-
</p>
 
-
<p>
 
-
    3. Autoclave for 40 mins on fluid cycle.
 
-
</p>
 
-
<p>
 
-
    4. Cool mixture to 50°C
 
-
</p>
 
-
<p>
 
-
    5. add antibiotic to mixture:
 
-
</p>
 
-
<p>
 
-
    6. For antibiotic concentrations refer to:
 
-
</p>
 
-
<p>
 
-
    “A comprehensive set of plasmids for vanillate and xylose-inducible gene expression in Caulobacter Cresentus”
 
-
</p>
 
-
<p>
 
-
    for kanamycin plates: add 250uL kanamycin
 
-
</p>
 
-
<p>
 
-
    for gentamycin plates: add 250uL gentamycin
 
-
</p>
 
-
<p>
 
-
    7. Pour agar into sterilized petri dishes.
 
-
</p>
 
-
<p>
 
-
    8. Let stand for 15 mins to allow agar to solidify.
 
-
</p>
 
-
<p>
 
-
    9. Cover with parafilm and store in refrigerator.
 
-
</p>
 
-
 
-
 
-
<p>
 
-
        <strong>Week 2: To create a standard growth curve for CB15</strong>
 
-
 
 
-
</p>
 
-
<p>
 
-
    8/26
 
-
</p>
 
-
<p>
 
-
    Ampicillin dilution
 
-
</p>
 
-
<p>
 
-
    <strong>Aim:</strong>
 
-
    to make stock ampicillin 50mg/ml
 
-
</p>
 
-
<p>
 
-
    <strong>Materials:</strong>
 
-
</p>
 
-
<p>
 
-
    -Ampicillin [Lot # 29371]
 
-
</p>
 
-
<p>
 
-
    -BD syringe 0.2micron filtuer
 
-
</p>
 
-
<p>
 
-
    -50ml centrifuge tube
 
-
</p>
 
-
<p>
 
-
    -eppendorf tubes
 
-
</p>
 
-
<p>
 
-
    <strong>Procedure:</strong>
 
-
</p>
 
-
<p>
 
-
    1. Weight out 0.5 g of Ampicillin
 
-
</p>
 
-
<p>
 
-
    2. Place in 50ml centrifuge tube along w/ 10ml of dH2O.
 
-
</p>
 
-
<p>
 
-
    3. Vortex the solution
 
-
</p>
 
-
<p>
 
-
    4. Using BD syringe filter out 10ml of diluted antibiotic into eppendorf tubes.
 
-
</p>
 
-
<p>
 
-
    5. Fill 20 eppendorf tubes w/ aliquot of 500ul.
 
-
</p>
 
-
<p>
 
-
    8/28
 
-
</p>
 
-
<p>
 
-
    Growth Curve
 
-
</p>
 
-
<p>
 
-
    <u>Aim</u>
 
-
    : to create a standard caulobacter growth curve
 
-
</p>
 
-
<p>
 
-
    <u>Materials:</u>
 
-
</p>
 
-
<p>
 
-
    -PYE+AMP
 
-
</p>
 
-
<p>
 
-
    -50ml centrifuge tubes x6
 
-
</p>
 
-
<p>
 
-
    -CB15
 
-
</p>
 
-
<p>
 
-
    <u>Procedure:</u>
 
-
</p>
 
-
<p>
 
-
    <u>For 33 degrees C</u>
 
-
</p>
 
-
<p>
 
-
    1. Label 1 centrifuge tube “negative” and the other two c tubes. “33 ” and “33 b”
 
-
</p>
 
-
<p>
 
-
    2. Make 80ml of pye + amp.
 
-
</p>
 
-
<p>
 
-
    Final conc of amp = 10ug/ml
 
-
</p>
 
-
<p>
 
-
    Add 80ml of pye into a flask w/ 16ul of ampicillin( stock conc. 50mg/ml)
 
-
</p>
 
-
<p>
 
-
    3. Fill each tube w/ 4ml PYE
 
-
</p>
 
-
<p>
 
-
    4. For negative control tube dip a sterile pipette tip in the tube. Discard tip.
 
-
</p>
 
-
<p>
 
-
    5. For the other 2 tubes pick a colony from CB15 plate w/ a pipette tip. Pick two colonies one for each.
 
-
</p>
 
-
<p>
 
-
    6. Store in incubator at 33C at 300rpm
 
-
</p>
 
-
<p>
 
-
    7. Make a table and later transfer in unto a plot of O.D600 versus time graph.
 
-
</p>
 
-
<p>
 
-
    8. Record an OD reading every couple of hours.
 
-
</p>
 
-
 
-
<p>
 
-
<br\>
 
-
<u>Results</u>
 
-
</p>
 
-
 
-
[[File:Growth curves.png]]
 
-
 
-
 
-
<p>
 
-
    8/26
 
-
</p>
 
-
<p>
 
-
    Inoculation of CB15
 
-
</p>
 
-
<p>
 
-
    <strong>Aim:</strong>
 
-
    making liquid culture of CB15
 
-
</p>
 
-
<p>
 
-
    <strong>Materials: </strong>
 
-
</p>
 
-
<p>
 
-
    -CB15(from Stanford)
 
-
</p>
 
-
<p>
 
-
    -Antibiotic
 
-
</p>
 
-
<p>
 
-
    -PYE
 
-
</p>
 
-
<p>
 
-
    <strong>Procedure:</strong>
 
-
</p>
 
-
<p>
 
-
    1. Add 50ul of Ampicillin (50mg/ml) into 250ml of PYE
 
-
</p>
 
-
<p>
 
-
    Refer to for final concentration of Ampicillin(10ug/ml):
 
-
</p>
 
-
<p>
 
-
    <u>“Dynamics and Control of Biofilms of the Oligotrophic Bacterium Caulobacter Crecentus.”</u>
 
-
</p>
 
-
<p>
 
-
    2. Pipet 20ml of pye + amp into centrifuge tube. Do this twice. Label one “Negative” and the other “CB15”
 
-
</p>
 
-
<p>
 
-
    3. Pick a colony from CB15 plate and eject tip in tube
 
-
</p>
 
-
<p>
 
-
    4. For negative control, drop a blank pipet tip
 
-
</p>
 
-
<p>
 
-
    5. Incubate at 28°C and 180 rpm
 
-
</p>
 
-
<p>
 
-
    <strong>Results:</strong>
 
-
</p>
 
-
<p>
 
-
    After 1 night PYE medium for negative control turned cloudy. Experiment has been contaminated.
 
-
</p>
 
-
<p>
 
-
    8/29
 
-
</p>
 
-
<p>
 
-
    Making Glycerol Stocks
 
-
</p>
 
-
<p>
 
-
    <strong>Aim:</strong>
 
-
    for long term storage of CB15
 
-
</p>
 
-
<p>
 
-
    <strong>Materials:</strong>
 
-
</p>
 
-
<p>
 
-
    -glycerol 60% (filtered)
 
-
</p>
 
-
<p>
 
-
    -cell culture cb15
 
-
</p>
 
-
<p>
 
-
    -eppendorf tubes.
 
-
</p>
 
-
<p>
 
-
    <u></u>
 
-
</p>
 
-
<p>
 
-
    <strong>Procedure:</strong>
 
-
</p>
 
-
<p>
 
-
    1. Prepare a preculuture: Pick a CB15 colony and inoculate it in 5ml of PYE. When culture reaches stationary phase the O.D600 should be around 1.3-1.6
 
-
</p>
 
-
<p>
 
-
    2. Caulobacters are store in 10% glycerol
 
-
</p>
 
-
<p>
 
-
    Refer to: “Caulobacter S-Layer Secretion Kit Manual”
 
-
</p>
 
-
<p>
 
-
    3. Calculate 10% glycerol.
 
-
</p>
 
-
<p>
 
-
    <u>(x amount of 10% glycerol</u>
 
-
    )(60)= (900ul of cells + x)(10)
 
-
</p>
 
-
<p>
 
-
    This comes out to be 180ul of 60% glycerol per 900ul of cb15
 
-
</p>
 
-
<p>
 
-
    4. In an eppendorf tube combine 180ul of 60% glycerol and 900ul of cb15 culture.
 
-
</p>
 
-
<p>
 
-
    5. Shake tube.
 
-
</p>
 
-
<p>
 
-
    6. Label and store tubes at -80C
 
-
</p>
 
-
<p>
 
-
    8/29-8/30
 
-
</p>
 
-
<p>
 
-
    Preparing Electrocompetent CB15
 
-
</p>
 
-
<p>
 
-
    <strong>Aim</strong>
 
-
    : making electrocompetent CB15
 
-
</p>
 
-
<p>
 
-
    <strong>Materials:</strong>
 
-
</p>
 
-
<p>
 
-
    -PYE
 
-
</p>
 
-
<p>
 
-
    -eppendorf tubes
 
-
</p>
 
-
<p>
 
-
    -centrifuge tubes(50ml)
 
-
</p>
 
-
<p>
 
-
    -1L falsk
 
-
</p>
 
-
<p>
 
-
    -ice-cold, sterile, distilled water
 
-
</p>
 
-
<p>
 
-
    -ice-cold, sterile 10% glycerol in distilled water.
 
-
</p>
 
-
<p>
 
-
    <strong>Procedure</strong>
 
-
    : will yield enough electro competent cells for 15 transformation.
 
-
</p>
 
-
<p>
 
-
    1. Diluting 60% stock conc. Glycerol into 10%
 
-
</p>
 
-
<p>
 
-
    Add 80ml of distilled water and 16ml of 60% filtered glycerol from fridge into a flask
 
-
</p>
 
-
<p>
 
-
    2. Autoclave 1000ml of distilled water, 250ml PYE flask (x2), 96ml of 10% glycerol - fluid cycle 40mins
 
-
</p>
 
-
<p>
 
-
    3. Inoculate a CB15 colony into 5ml PYE medium. Grow at 30<sup>o</sup>C w/ shaking until the O. D is 0.5-1.0 ( should take about 1 night)
 
-
</p>
 
-
<p>
 
-
    4. Record the O.D of the culture above. <u>0.902</u>
 
-
</p>
 
-
<p>
 
-
    5. Dilution calculation: calculate the amount of culture you would add to 250ml of fresh PYE to achieve an O.D of 0.4-0.6 in 18hrs.
 
-
</p>
 
-
<p>
 
-
    -doubling time of Caulobacter is about 3hrs. = 6 times doubling
 
-
</p>
 
-
<p>
 
-
    2<sup>6</sup> = 64 -&gt; 0.5/64= 0.008(starting O.D)
 
-
</p>
 
-
<p>
 
-
    (<u>x</u>ml)(0.902O.D)=(<u>250</u>ml)(.008O.D) x=2ml
 
-
</p>
 
-
<p>
 
-
    Add 2ml of culture to 250ml PYE
 
-
</p>
 
-
<p>
 
-
    6. Incubate for 18hrs.
 
-
</p>
 
-
<p>
 
-
    7. Split 250ml of culture among five 50ml centrifuge tubes
 
-
</p>
 
-
<p>
 
-
    8. Centrifuge cells at 10000XG for 7mins at 4<sup>o</sup>C
 
-
</p>
 
-
<p>
 
-
    9. Remove supernatant and resuspend cells by in 50ml of ice-cold sterile, distilled water. Repeat for all tubes. DO NOT VORTEX
 
-
</p>
 
-
<p>
 
-
    10. Centrifuge w/ same conditions
 
-
</p>
 
-
<p>
 
-
    11. Remove supernatant and resuspend the cells in 25ml of ice-cold, sterile, distilled water.
 
-
</p>
 
-
<p>
 
-
    12. Centrifuge.
 
-
</p>
 
-
<p>
 
-
    13. Remove supernatant and resuspend the cells in 1/20 the original volume (50ml in each tube)
 
-
</p>
 
-
<p>
 
-
    1/20 * 50ml = 2.5ml of ice-cold, sterile 10% glycerol.
 
-
</p>
 
-
<p>
 
-
    14. Centrifuge
 
-
</p>
 
-
<p>
 
-
    15. Remove supernatant resuspend cells in 150ul of ice-cold, sterile 10% glycerol.
 
-
</p>
 
-
<p>
 
-
    16. Dispense cells into 50ul aliquot in eppendorf tubes. We ended up w/ 15 tubes total
 
-
</p>
 
-
<p>
 
-
    17. Store at 80<sup>o</sup>C.
 
-
</p>
 
-
<p>
 
-
    8/30
 
-
</p>
 
-
<p>
 
-
    CB15 Transformation
 
-
</p>
 
-
<p>
 
-
    <strong>Aim</strong>
 
-
    : Transforming CB15 w/ PxYFPC-2 and PvCFPC-4 plasmids
 
-
</p>
 
-
<p>
 
-
    <strong>Materials</strong>
 
-
    :
 
-
</p>
 
-
<p>
 
-
    -CB15(from Stanford)
 
-
</p>
 
-
<p>
 
-
    -PxYFPC-2
 
-
</p>
 
-
<p>
 
-
    -PvCFPC-4
 
-
</p>
 
-
<p>
 
-
    -PYE+Kanamycin plates (x3)
 
-
</p>
 
-
<p>
 
-
    -PYE+Gentamycin plates (x3)
 
-
</p>
 
-
<p>
 
-
    -ice-cold sterile dH2O
 
-
</p>
 
-
<p>
 
-
    -electroporation cuvettes (x3)
 
-
</p>
 
-
<p>
 
-
    -sterile beads
 
-
</p>
 
-
<p>
 
-
    <strong>Procedure:</strong>
 
-
</p>
 
-
<p>
 
-
    1. If frozen, thaw electro competent cells on ice.
 
-
</p>
 
-
<p>
 
-
    2. Place electroporation cuvettes on ice.
 
-
</p>
 
-
<p>
 
-
    3. Dilution of Plasmids:
 
-
</p>
 
-
<p>
 
-
    PxYFPC-2 conc. Is 293.2ng/ml in freezer.
 
-
</p>
 
-
<p>
 
-
    -to dilute add 1ul of stock conc. into 100ul of sterile cold dh20. Making the final conc. 2.932ng/ul -&gt; label this Px.
 
-
</p>
 
-
<p>
 
-
    PvCFPC-4 conc. is 302.3 ng/ul in freezer
 
-
</p>
 
-
<p>
 
-
    -to dilute add 1ul of stock conc. into 100ul of sterile cold dH20. Making the final conc. 3.023ng/ul -&gt; label this Pv.
 
-
</p>
 
-
<p>
 
-
    4. Pipet 100ul of electro competent CB15 cells to a electroporation cuvette.
 
-
</p>
 
-
<p>
 
-
    5. Add 20ng of plasmid DNA so add 7ul of diluted plasmid DNA (PxYFPC-2)
 
-
</p>
 
-
<p>
 
-
    6. Mix around using pipette
 
-
</p>
 
-
<p>
 
-
    7. Electroporate at 2.5kV
 
-
</p>
 
-
<p>
 
-
    8. Record time constant.
 
-
</p>
 
-
<p>
 
-
    9. Take cuvette and immediately add 600ul of PYE. Mix using pipette.
 
-
</p>
 
-
<p>
 
-
    10. Transfer to microcentrifuge tube. Then to a shaking incubator at 33<sup>o</sup>C / 300rpm/ for 2hrs(we only left it in there for 1hrs)
 
-
</p>
 
-
<p>
 
-
    11. Repeat steps 5-11 for the second plasmid DNA (PvCFPC-4) and negative control. Instead of using plasmid DNA add 7ul of sterile dH20 for negative
 
-
    control.
 
-
</p>
 
-
<p>
 
-
    -Time constants a. pxyfpc-2 5.0
 
-
</p>
 
-
<p>
 
-
    b. pvcfpc-4 5.2
 
-
</p>
 
-
<p>
 
-
    b. negative 4.8
 
-
</p>
 
-
<p>
 
-
    time constant b/w 3.6-4.3 msec are good (depends on the machine)
 
-
</p>
 
-
<p>
 
-
    12. Plating:
 
-
</p>
 
-
<p>
 
-
    Plating scheme:
 
-
</p>
 
-
[[File:Plating scheme.png]]
 
-
 
-
<p>
 
-
    13. For each tube of 600ul aliquot of transformed cells put 300ul in Kan plate and the other 300ul into Gent plate. Repeat this procedure 2 more times for
 
-
    negative control and the other transformation.
 
-
</p>
 
-
<p>
 
-
    14. Incubate plates at 33<sup>o</sup>C for 3 days.
 
-
</p>
 
-
<p>
 
-
    9/2 (Monday)
 
-
</p>
 
-
<p>
 
-
    After 3 days of incubation, results are as follows
 
-
</p>
 
-
[[File:CB15 transformation results.png]]
 
-
<p>
 
-
    -There are contaminants in the negative control.
 
-
</p>
 
-
<p>
 
-
    -Plates w/ transform cells turned out pretty well. The results are as expected. Since PxYFPC-2 is kanamycin resistant and PvCFPC-4 is gentamycin resistant,
 
-
    transformation w/ PxYFPC-2 has growth only on PYE+KAN plate and PvCFPC-4 has growth on PYE+GENT plate.
 
-
</p>
 
-
<p>
 
-
        <strong>Week 3: Production of Biofilms</strong>
 
-
    </p>
 
-
<p>
 
-
    9/3
 
-
</p>
 
-
<p>
 
-
    Production of Biofilms (Draft)
 
-
</p>
 
-
<p>
 
-
    <strong>Aim:</strong>
 
-
    To grow high density biofilms.
 
-
</p>
 
-
<p>
 
-
    <strong>Materials: </strong>
 
-
</p>
 
-
<p>
 
-
    -glass coverslips x6
 
-
</p>
 
-
<p>
 
-
    -filter paper x6
 
-
</p>
 
-
<p>
 
-
    -12 well culture plate
 
-
</p>
 
-
<p>
 
-
    -pye+ amp
 
-
</p>
 
-
<p>
 
-
    -preculture – prepared on 9/2.
 
-
</p>
 
-
<p>
 
-
    <strong>Procedure</strong>
 
-
    :
 
-
</p>
 
-
<p>
 
-
    1. Check O.D of preculture made on 9/2 by Rolando. 0.D = 1.250
 
-
</p>
 
-
<p>
 
-
    Preculture: a colony was inoculated into a test tube w/ 5ml pye.
 
-
</p>
 
-
<p>
 
-
    2. Autoclave glass coverslips (20min sterilization, 20 min dry)
 
-
</p>
 
-
<p>
 
-
    3. Flame forcep and prepare 100ml PYE + AMP(20ul)
 
-
</p>
 
-
<p>
 
-
    4. Cut filter paper into 2 pieces per sheet ( cut out 8 pieces)
 
-
</p>
 
-
<p>
 
-
    5. Place filter paper/glass in wells.
 
-
</p>
 
-
<p>
 
-
    -modified design w/ 7 wells with filter paper and 5 wells with glass.
 
-
</p>
 
-
<p>
 
-
    6. Fill each wells with 2ml PYE+AMP
 
-
</p>
 
-
<p>
 
-
    7. Inoculate 10 wells w/ 10ul of preculture culture and use 2 wells for negative control (one for glass and one for filter paper)
 
-
</p>
 
-
<p>
 
-
    8. Incubate at 33<sup>o</sup>C at 350rpm.
 
-
</p>
 
-
<p>
 
-
    <strong>Results</strong>
 
-
    : Images are obtained from bright field microscope under 40x after 20-24 hrs. of growth. There are no visible cells on filter paper(left) oppose to a semi
 
-
    uniform layer of biofilm forming on the glass surface(right)
 
-
</p>
 
-
[[File:Biofilm 1.png]]
 
-
<p>
 
-
    9/6
 
-
</p>
 
-
<p>
 
-
    Inducing xylose and vanillate
 
-
</p>
 
-
<p>
 
-
    <strong>Aim:</strong>
 
-
    To inducing transform cells w/ 0.03% xylose or .5mM vanillate on agar plates.
 
-
</p>
 
-
<p>
 
-
    <strong>Materials:</strong>
 
-
</p>
 
-
<p>
 
-
    -pye+gent agar plate(x2)
 
-
</p>
 
-
<p>
 
-
    -pye+kan agar plate(x2)
 
-
</p>
 
-
<p>
 
-
    -1% xylose
 
-
</p>
 
-
<p>
 
-
    -50mM vanillate
 
-
</p>
 
-
<p>
 
-
    <strong>Procedure:</strong>
 
-
</p>
 
-
<p>
 
-
    Plating scheme:
 
-
</p>
 
-
[[File:Plating scheme 1.png]]
 
-
<p>
 
-
    1. Calculate the amount of 1% xylose to add on agar plates
 
-
</p>
 
-
<p>
 
-
    - Xylose = 0.03%
 
-
</p>
 
-
<p>
 
-
    15ml(0.03g/100ml) = x (.25g/25ml)
 
-
</p>
 
-
<p>
 
-
    x = .45ml = 450ul
 
-
</p>
 
-
<p>
 
-
    squirt 450ul of 1% xylose one pye + kan and one pye + gent plate. Wait 15mins until they dry
 
-
</p>
 
-
<p>
 
-
    2. Calculate the amount of 50mM vanillate to add on agar plates (pye +gent)
 
-
</p>
 
-
<p>
 
-
    - Vanillate = 0.5mM
 
-
</p>
 
-
<p>
 
-
    50mM x = (15 + x )(0.5mM) x= 151.5ul
 
-
</p>
 
-
<p>
 
-
    squirt 151.1ul of 50mM vanillate one pye+ gent and one + kan plate. Wait until they dry
 
-
</p>
 
-
<p>
 
-
    3. Pick a colony from CB15 + PxYFPC-2 transform plate and streak on a kan plate with xylose. Repeat for the other kan plate with vanillate.
 
-
</p>
 
-
<p>
 
-
    4. Repeat step 3 for PvCFPC-4 on gent plates.
 
-
</p>
 
-
<p>
 
-
    5. Incubate for 2 or 3 days at 33<sup>o</sup>C
 
-
</p>
 
-
<p>
 
-
    6. Look at plates under UV lamp
 
-
</p>
 
-
<p>
 
-
    Results: There is no difference in fluorescent b/w induced and non-induced plates.
 
-
</p>
 
-
<p>
 
-
    9/5
 
-
</p>
 
-
<p>
 
-
    Protocol for 50mM vanillate
 
-
</p>
 
-
<p>
 
-
    <strong>Aim:</strong>
 
-
    to make 50mM vanillate from vanillic acid.
 
-
</p>
 
-
<p>
 
-
    <strong>Materials:</strong>
 
-
</p>
 
-
<p>
 
-
    -0.21g vanillic acid [lot b185020]
 
-
</p>
 
-
<p>
 
-
    -naoh
 
-
</p>
 
-
<p>
 
-
    -centrifuge tube
 
-
</p>
 
-
<p>
 
-
    -.2 micron filter
 
-
</p>
 
-
<p>
 
-
    -syringe
 
-
</p>
 
-
<p>
 
-
    <strong>Procedure:</strong>
 
-
</p>
 
-
<p>
 
-
    Calculation
 
-
</p>
 
-
<p>
 
-
    X = (0.050)(0.025)(168.5) = 0.210 g vanillic acid
 
-
</p>
 
-
<p>
 
-
    1. Add 0.210g of vanillic acid acid into a centrifuge tube along w/ 25ml dh20.
 
-
</p>
 
-
<p>
 
-
    2. Vortex solution. Until it homogenizes
 
-
</p>
 
-
<p>
 
-
    3. Titrate w/ NaOH until pH reaches 7.4
 
-
</p>
 
-
<p>
 
-
    9/9
 
-
</p>
 
-
<p>
 
-
    Inducing xylose or vanillate into liquid cultures.
 
-
</p>
 
-
<p>
 
-
    <strong>Aim:</strong>
 
-
    Inducing xylose or vanillate into liquid cultures.
 
-
</p>
 
-
<p>
 
-
    <strong>Materials: </strong>
 
-
</p>
 
-
<p>
 
-
    -PYE + Kan
 
-
</p>
 
-
<p>
 
-
    -PYE+ Gent
 
-
</p>
 
-
<p>
 
-
    -50mM vanillate
 
-
</p>
 
-
<p>
 
-
    -50% xylose
 
-
</p>
 
-
<p>
 
-
    -glass test tubes (x4)
 
-
</p>
 
-
<p>
 
-
    -50ml centrifuge tubes (x4)
 
-
</p>
 
-
<p>
 
-
    <strong>Procedure:</strong>
 
-
</p>
 
-
<p>
 
-
    Calculations:
 
-
</p>
 
-
<p>
 
-
    2mM vanillate in 25ml PYE from 50mM stock concentration vanillate
 
-
</p>
 
-
<p>
 
-
    X(50mM)= ( 10+x)(2) x= 412ul
 
-
</p>
 
-
<p>
 
-
    1% xylose in 10ml PYE from 50% stock concentration xylose.
 
-
</p>
 
-
<p>
 
-
    X(50mM)= ( 10+x) x= 204ul
 
-
</p>
 
-
<p>
 
-
    1. Add 5ml of PYE+Kan to a test tube, then inoculate it w/ pxyfpc-2 by picking a colony from transformed plate. Make a negative
 
-
</p>
 
-
<p>
 
-
    2. Repeat step 1 for pvcfpc-4. Use pye + gent instead of pye + kan
 
-
</p>
 
-
<p>
 
-
    3. Incubate at 33<sup>o</sup>C 300rpm overnight.
 
-
</p>
 
-
<p>
 
-
    4. Prepare 4 tubes, two w/ 10ml pye+kan and the rest w/ pye + gent.
 
-
</p>
 
-
<p>
 
-
    5. For the two 10ml pye+kan inoculate each tube w/ 2.0ml of overnight preculture(pxyfpc-2). Do the same for pvcfpc-4 (2ml of preculture(pvcfpc-4) into
 
-
    pye+gent)
 
-
</p>
 
-
<p>
 
-
    6. Wait a couple of hours until O.D reaches 0.4-0.6.
 
-
</p>
 
-
<p>
 
-
    O.D 0.537 when induce
 
-
</p>
 
-
<p>
 
-
    7. Inoculate one pye+kan tube w/ 416ul of 50% xylose. The second one is negative control (Noninduced)
 
-
</p>
 
-
<p>
 
-
    8. Inoculate one pye +gent tube w/ 204ul of 50mM vanillate. Second one is noninduced
 
-
</p>
 
-
<p>
 
-
    9. Incubate at 33<sup>o</sup>C 300rpm overnight.
 
-
</p>
 
-
<p>
 
-
    10. Check if cells fluoresce under w/ U.V lamp.
 
-
</p>
 
-
<p>
 
-
    Results: Induction w/ 2mM vanillate ( 2 tubes next to each other on the right) doesn’t seem to fluoresce under U.V light. On the contrary tube(far left) with 1% has a different color compare to its’ noninduced negative control
 
-
   
 
-
</p>
 
-
[[File:Induction 1.png]]
 
-
 
-
<p>
 
-
    9/10
 
-
</p>
 
-
<p>
 
-
    1X PBS (phosphate buffer saline) 1L
 
-
</p>
 
-
<p>
 
-
    Aim: To make PBS for DAPI staining
 
-
</p>
 
-
<p>
 
-
    Materials:
 
-
</p>
 
-
<p>
 
-
    -8g of NaCl 137mM NaCl
 
-
</p>
 
-
<p>
 
-
    -0.2g of KCl [lot 123796] 2.7mM KCl
 
-
</p>
 
-
<p>
 
-
    -1.44g of Na2HPO4 [lot 116747] 10mM Na2HPO4
 
-
</p>
 
-
<p>
 
-
    -0.24g KH2PO4 2mM KH2PO4
 
-
</p>
 
-
<p>
 
-
    -HCl
 
-
</p>
 
-
<p>
 
-
    Procedure:
 
-
</p>
 
-
<p>
 
-
    1. Recipe above is for 1L. We’re only making 500ml so divide everything by 2.
 
-
</p>
 
-
<p>
 
-
    2. Add 4g NaCl, 0.1g KCl, 0.72g Na2HPO4, and 0.12g KH2PO4 to a bottle
 
-
</p>
 
-
<p>
 
-
    3. Then add dH20 to the 500ml mark
 
-
</p>
 
-
<p>
 
-
    4. Titrate with HCl until pH reaches 7.4
 
-
</p>
 
-
<p>
 
-
    9/11
 
-
</p>
 
-
<p>
 
-
    Stock solution of DAPI
 
-
</p>
 
-
<p>
 
-
    Aim: to make stock solution of DAPI
 
-
</p>
 
-
<p>
 
-
    Materials:
 
-
</p>
 
-
<p>
 
-
    -10mg DAPI
 
-
</p>
 
-
<p>
 
-
    -2ml dH2O
 
-
</p>
 
-
<p>
 
-
    -20 eppendorf tubes.
 
-
</p>
 
-
<p>
 
-
    Procedure:
 
-
</p>
 
-
<p>
 
-
    1. Add 2ml dH2O into 10mg DAPI vial.
 
-
</p>
 
-
<p>
 
-
    2. Vortex vial.
 
-
</p>
 
-
<p>
 
-
    3. Aliquot 10ul into eppendorf tubes.
 
-
</p>
 
-
<p>
 
-
    4. Store in freezer. Away from light.
 
-
</p>
 
-
<p>
 
-
    9/11-9/12
 
-
</p>
 
-
<p>
 
-
    Vanillate and xylose induction at different concentration.
 
-
</p>
 
-
<p>
 
-
    Aim: to find a concentration at which transform cells fluoresce.
 
-
</p>
 
-
<p>
 
-
    Materials:
 
-
</p>
 
-
<p>
 
-
    -12 well culture plate (x3)
 
-
</p>
 
-
<p>
 
-
    -CB15+PxYFPC-2 preculture (from previous experiment)
 
-
</p>
 
-
<p>
 
-
    -CB15+PvCFPC-4 preculture (from previous experiment)
 
-
</p>
 
-
<p>
 
-
    -CB15+PvCFPC-4 pick from a plate
 
-
</p>
 
-
<p>
 
-
    -PYE+KAN
 
-
</p>
 
-
<p>
 
-
    -PYE+GENT
 
-
</p>
 
-
<p>
 
-
    -50% xylose
 
-
</p>
 
-
<p>
 
-
    -50mM vanillate
 
-
</p>
 
-
<p>
 
-
    Procedure:
 
-
</p>
 
-
<p>
 
-
    9/11
 
-
</p>
 
-
<p>
 
-
    1. Precultures of CB15+PxYFPC-2 and CB15+PvCFPC-4 were prepared from previous induction experiment. 5ul of preculture was added to new 5ml PYE.
 
-
</p>
 
-
<p>
 
-
    2. Pick a colony from pvcfpc-4 transformed plate. Prepare a negative.
 
-
</p>
 
-
<p>
 
-
    3. Incubate at 200rpm 33<sup>o</sup>C
 
-
</p>
 
-
<p>
 
-
    9/12
 
-
</p>
 
-
<p>
 
-
    4. Put 2ml of PYE+KAN in 6 wells on a culture plate. Repeat twice for PYE+Gent on new plates. (one gent would from preculture and the other one from a new
 
-
    colony picked from plate)
 
-
</p>
 
-
<p>
 
-
    5. Inoculate all 2ml PYE+Kan wells w/ 250ul of pxyfpc-2 preculture.
 
-
</p>
 
-
<p>
 
-
    6. For Pye+Gent inoculate one plate w/ 250ul of pvcfpc-4 preculture and the other plate w/ preculure from colony picked from plate
 
-
</p>
 
-
<p>
 
-
    7. Incubate at 33<sup>o</sup>C 200rpm until O.Ds of all cultures are round 0.4-0.6. Then induce according to the following scheme.
 
-
   
 
-
</p>
 
-
[[File:Biofilms.png]]
 
-
<p>
 
-
    8. Incubate at 200rpm 33<sup>o</sup>C for atleast 5 hrs.
 
-
</p>
 
-
<p>
 
-
    9. Look under uv lamp for floursecent
 
-
</p>
 
-
<p>
 
-
    Results.
 
-
</p>
 
-
<p>
 
-
    For PxYFPC-2 there seems to be fluorescent at 0.5% xylose.
 
-
</p>
 
-
<p>
 
-
    For PvCFPC-4 cells fluoresce at 5mM to 7mM
 
-
</p>
 
-
<p>
 
-
    Protocol for DAPI staining
 
-
</p>
 
-
<p>
 
-
    Refer to
 
-
http://www.igsb.org/uploads/pdf/ProtocolDAPIStaining.pdf
 
-
</p>
 
-
<p>
 
-
    <u>Aim:</u>
 
-
    To stain biofilms w/ DAPI
 
-
</p>
 
-
<p>
 
-
    <u>Materials:</u>
 
-
</p>
 
-
<p>
 
-
    -4ml of 4% PFA(paraformaldehyde) look at protocol
 
-
</p>
 
-
<p>
 
-
    -1X PBS: look at protocol
 
-
</p>
 
-
<p>
 
-
    -4ml of 0.1% Triton-X-100: look at protocol
 
-
</p>
 
-
<p>
 
-
    -4ml of DAPI(stock conc. 1ug/ml): look at protocol
 
-
</p>
 
-
<p>
 
-
    -fume hood
 
-
</p>
 
-
<p>
 
-
    -Nutator
 
-
</p>
 
-
<p>
 
-
    -biofilm coverslip
 
-
</p>
 
-
<p>
 
-
    -12 well culture plate
 
-
</p>
 
-
<p>
 
-
    -paper towel and aluminum foil for disposal for PFA
 
-
</p>
 
-
<p>
 
-
    <u>Procedure:</u>
 
-
</p>
 
-
<p>
 
-
    1. Make 4% PFA, 1X PBS, 0.1% Triton-X-100, and DAPI stock conc. 1ug/ml (prepare these by looking at protocols). Do all work w/ PFA in fume hood.
 
-
</p>
 
-
<p>
 
-
    2. Using a new 12 well culture plate, fill a well up w/ 4ml of DH20.
 
-
</p>
 
-
<p>
 
-
    3. Take a coverslip to be analyze, wash slip by transferring it to the well w/ 4ml of dH2O for 2mins w/ gentle shaking (in order to get rid of swarmer and
 
-
    unattached cells.)
 
-
</p>
 
-
<p>
 
-
    4. Do this next step in fume hood, since we are going to work w/ PFA. Aspirate dH2O and replace medium w/ 4ml of 4% PFA. Leave coverslip in solution for 8
 
-
    minutes and place plate on a nutator. Do not leave it in there for more than 10mins.
 
-
</p>
 
-
<p>
 
-
    5. Aspirate 4% PFA medium. PFA is volatile so dumped liquid waste onto paper towels that should be wrapped in aluminum foil before disposal.
 
-
</p>
 
-
<p>
 
-
    6. Wash cells by inoculating 4ml of 1x PBS into well for 5mins. Place plate on a nutator. Repeat this process 2 more times (wash cells w/ 1x PBS for a
 
-
    total of 3 times.)
 
-
</p>
 
-
<p>
 
-
    7. Remove 1X PBS and add 4ml of 0.1% Triton-X-100 (to permeabilize cells). Leave coverslip in there for 10mins. Also place plate on a nutator.
 
-
</p>
 
-
<p>
 
-
    8. After 10mins, repeat step 6. Wash cells 3 times w/ 1X PBS (5mins/wash.)
 
-
</p>
 
-
<p>
 
-
    9. Stain cells by inoculating well w/ 4ml of DAPI for 5mins. Place plate on a nutator.
 
-
</p>
 
-
<p>
 
-
    10. Wash cells w/ 1X PBS for 5 mins.
 
-
</p>
 
-
<p>
 
-
    11. Coverslip is now ready to be analyzed
 
-
</p>
 
-
<p>
 
-
    12. See microscopy protocol.
 
-
</p>
 
-
<p>
 
-
    9/16-9/20
 
-
</p>
 
-
<p>
 
-
    <strong>Production of Biofilm</strong>
 
-
</p>
 
-
<p>
 
-
    <strong>Aim</strong>
 
-
    : To grow a high density uniform monolayer under varying parameters. We will culture the bacteria for 4 days taking data points at various time intervals.
 
-
    The cultures will be grown on glass cover slips, micro-filter paper, and plastic.
 
-
</p>
 
-
<p>
 
-
    <strong>Materials</strong>
 
-
    :
 
-
</p>
 
-
<p>
 
-
    C. crescentus CB15 (pre-culture)
 
-
</p>
 
-
<p>
 
-
    PYE + ampicillin
 
-
</p>
 
-
<p>
 
-
    Clorox
 
-
</p>
 
-
<p>
 
-
    Ethanol
 
-
</p>
 
-
<p>
 
-
    Milli HQ water
 
-
</p>
 
-
<p>
 
-
    12 Well Tissue Culture Plate x 10
 
-
</p>
 
-
<p>
 
-
    40 Glass coverslips 15mm
 
-
</p>
 
-
<p>
 
-
    40 Filter Paper 0.22 micron
 
-
</p>
 
-
<p>
 
-
    40 Plastic coverslips
 
-
</p>
 
-
<p>
 
-
    forceps
 
-
</p>
 
-
<p>
 
-
    <strong>Protocol</strong>
 
-
    :
 
-
</p>
 
-
<p>
 
-
    1) Confirm if supply of pre-culture is available.
 
-
</p>
 
-
<p>
 
-
    Preparing a pre culture: Using a pipette tip pick a colony from CB15 plate (from Stanford) dip it in 5ml PYE+amp. Incubate this at 200rpm and 33degrees C
 
-
    overnight.
 
-
</p>
 
-
<p>
 
-
    2) Prepare glass cover slips by cleaning with w/ ethanol. There’s 10% ethanol in lab if not we can make 10% ethanol by adding 100ml of ethanol to 900ml
 
-
    dH20. Squirt some ethanol on coverslips and wipe them away with KimWipes.
 
-
</p>
 
-
<p>
 
-
    3) Next sterilize glass pieces, PYE, dH2O, and forceps by autoclave at 120°C for 40 mins on fluid cycle
 
-
</p>
 
-
<p>
 
-
    4) Sterilize plastic pieces by using ethanol and rinsing off w/ sterile dH20
 
-
</p>
 
-
<p>
 
-
    <strong>See figure for layout (these steps done for each different surface type)</strong>
 
-
</p>
 
-
<p>
 
-
    5) Place a cover slip in each well of tissue culture plate. We will have a total of 10 culture plates testing 3 different parameters (temps, days, and
 
-
    replacement of nutrients) See figure for experiment layout.
 
-
</p>
 
-
[[File:Biofilms 2.png]]
 
-
<p>
 
-
    6) Add 2mL of PYE to each well.
 
-
</p>
 
-
<p>
 
-
    7) Identify negative control wells.
 
-
</p>
 
-
<p>
 
-
    8) Before inoculating check OD600 of preculture.
 
-
</p>
 
-
<p>
 
-
    Procedure for spectrometer: Turn on the spectrometer, there’s a switch on the back of the machine. Hit option 4 Cell Count. Zero the machine out w/ a blank
 
-
    (do this by filling a cuvette w/ PYE, place it in the machine, and hit auto zero.) There should be an arrow on the cuvette, turn the arrow until it faces
 
-
    left and place it in the spectrometer. Read numbers off the top right. It should say 600nm and 0.00. Next pipette out 200ul of culture into another
 
-
    cuvette, place it in the machine, and read off the top right corner or press start and it’ll pop out a number (this is the OD at 600nm).
 
-
</p>
 
-
<p>
 
-
    9) Inoculate each well that is to receive culture with 10uL of pre culture (CB15)
 
-
</p>
 
-
<p>
 
-
    10) Incubate at 33°C at 300rpm in incubator
 
-
</p>
 
-
<p>
 
-
    <strong>To take a data point</strong>
 
-
</p>
 
-
<p>
 
-
    11 to take a data point at the 24hr interval, remove the coverslip to be analyzed. Use sterile forcep to handle coverslip. Wash coverslip to remove swarmer
 
-
    and unattached stalked cells by preparing a petri dish filled w/ 15ml PBS (can also use a well and fill it w/ 2ml dh20). Place coverslip in PBS water for 2
 
-
    min with gentle shaking.
 
-
</p>
 
-
<p>
 
-
    (Rough graph for planning. Data points will include pictures of different staining methods. Look at different a protocol for staining)
 
-
</p>
 
-
<p>
 
-
    28°C
 
-
</p>
 
-
<table border="1" cellspacing="0" cellpadding="0">
 
-
    <tbody>
 
-
        <tr>
 
-
            <td width="112" valign="top">
 
-
                <p>
 
-
                    24 hrs. nutrient replacement
 
-
                </p>
 
-
            </td>
 
-
            <td width="47" valign="top">
 
-
                <p>
 
-
                    24hrs
 
-
                </p>
 
-
            </td>
 
-
            <td width="55" valign="top">
 
-
                <p>
 
-
                    48hrs
 
-
                </p>
 
-
            </td>
 
-
            <td width="55" valign="top">
 
-
                <p>
 
-
                    72hrs
 
-
                </p>
 
-
            </td>
 
-
            <td width="55" valign="top">
 
-
                <p>
 
-
                    96hrs
 
-
                </p>
 
-
            </td>
 
-
            <td width="83" valign="top">
 
-
            </td>
 
-
            <td width="57" valign="top">
 
-
            </td>
 
-
            <td width="66" valign="top">
 
-
            </td>
 
-
            <td width="60" valign="top">
 
-
            </td>
 
-
        </tr>
 
-
        <tr>
 
-
            <td width="112" valign="top">
 
-
                <p>
 
-
                    Glass
 
-
                </p>
 
-
            </td>
 
-
            <td width="47" valign="top">
 
-
            </td>
 
-
            <td width="55" valign="top">
 
-
            </td>
 
-
            <td width="55" valign="top">
 
-
            </td>
 
-
            <td width="55" valign="top">
 
-
            </td>
 
-
            <td width="83" valign="top">
 
-
            </td>
 
-
            <td width="57" valign="top">
 
-
            </td>
 
-
            <td width="66" valign="top">
 
-
            </td>
 
-
            <td width="60" valign="top">
 
-
            </td>
 
-
        </tr>
 
-
        <tr>
 
-
            <td width="112" valign="top">
 
-
                <p>
 
-
                    Porous
 
-
                </p>
 
-
            </td>
 
-
            <td width="47" valign="top">
 
-
            </td>
 
-
            <td width="55" valign="top">
 
-
            </td>
 
-
            <td width="55" valign="top">
 
-
            </td>
 
-
            <td width="55" valign="top">
 
-
            </td>
 
-
            <td width="83" valign="top">
 
-
            </td>
 
-
            <td width="57" valign="top">
 
-
            </td>
 
-
            <td width="66" valign="top">
 
-
            </td>
 
-
            <td width="60" valign="top">
 
-
            </td>
 
-
        </tr>
 
-
        <tr>
 
-
            <td width="112" valign="top">
 
-
                <p>
 
-
                    Plastic
 
-
                </p>
 
-
            </td>
 
-
            <td width="47" valign="top">
 
-
            </td>
 
-
            <td width="55" valign="top">
 
-
            </td>
 
-
            <td width="55" valign="top">
 
-
            </td>
 
-
            <td width="55" valign="top">
 
-
            </td>
 
-
            <td width="83" valign="top">
 
-
            </td>
 
-
            <td width="57" valign="top">
 
-
            </td>
 
-
            <td width="66" valign="top">
 
-
            </td>
 
-
            <td width="60" valign="top">
 
-
            </td>
 
-
        </tr>
 
-
        <tr>
 
-
            <td width="112" valign="top">
 
-
                <p>
 
-
                    No Nutrient Replacement
 
-
                </p>
 
-
            </td>
 
-
            <td width="47" valign="top">
 
-
            </td>
 
-
            <td width="55" valign="top">
 
-
            </td>
 
-
            <td width="55" valign="top">
 
-
            </td>
 
-
            <td width="55" valign="top">
 
-
            </td>
 
-
            <td width="83" valign="top">
 
-
            </td>
 
-
            <td width="57" valign="top">
 
-
            </td>
 
-
            <td width="66" valign="top">
 
-
            </td>
 
-
            <td width="60" valign="top">
 
-
            </td>
 
-
        </tr>
 
-
        <tr>
 
-
            <td width="112" valign="top">
 
-
                <p>
 
-
                    Glass
 
-
                </p>
 
-
            </td>
 
-
            <td width="47" valign="top">
 
-
            </td>
 
-
            <td width="55" valign="top">
 
-
            </td>
 
-
            <td width="55" valign="top">
 
-
            </td>
 
-
            <td width="55" valign="top">
 
-
            </td>
 
-
            <td width="83" valign="top">
 
-
            </td>
 
-
            <td width="57" valign="top">
 
-
            </td>
 
-
            <td width="66" valign="top">
 
-
            </td>
 
-
            <td width="60" valign="top">
 
-
            </td>
 
-
        </tr>
 
-
        <tr>
 
-
            <td width="112" valign="top">
 
-
                <p>
 
-
                    Porous
 
-
                </p>
 
-
            </td>
 
-
            <td width="47" valign="top">
 
-
            </td>
 
-
            <td width="55" valign="top">
 
-
            </td>
 
-
            <td width="55" valign="top">
 
-
            </td>
 
-
            <td width="55" valign="top">
 
-
            </td>
 
-
            <td width="83" valign="top">
 
-
            </td>
 
-
            <td width="57" valign="top">
 
-
            </td>
 
-
            <td width="66" valign="top">
 
-
            </td>
 
-
            <td width="60" valign="top">
 
-
            </td>
 
-
        </tr>
 
-
        <tr>
 
-
            <td width="112" valign="top">
 
-
                <p>
 
-
                    Plastic
 
-
                </p>
 
-
            </td>
 
-
            <td width="47" valign="top">
 
-
            </td>
 
-
            <td width="55" valign="top">
 
-
            </td>
 
-
            <td width="55" valign="top">
 
-
            </td>
 
-
            <td width="55" valign="top">
 
-
            </td>
 
-
            <td width="83" valign="top">
 
-
            </td>
 
-
            <td width="57" valign="top">
 
-
            </td>
 
-
            <td width="66" valign="top">
 
-
            </td>
 
-
            <td width="60" valign="top">
 
-
            </td>
 
-
        </tr>
 
-
    </tbody>
 
-
</table>
 
-
<p>
 
-
    33°C
 
-
</p>
 
-
<table border="1" cellspacing="0" cellpadding="0">
 
-
    <tbody>
 
-
        <tr>
 
-
            <td width="112" valign="top">
 
-
                <p>
 
-
                    24 hrs. nutrient replacement
 
-
                </p>
 
-
            </td>
 
-
            <td width="47" valign="top">
 
-
                <p>
 
-
                    24hrs
 
-
                </p>
 
-
            </td>
 
-
            <td width="55" valign="top">
 
-
                <p>
 
-
                    48hrs
 
-
                </p>
 
-
            </td>
 
-
            <td width="55" valign="top">
 
-
                <p>
 
-
                    72hrs
 
-
                </p>
 
-
            </td>
 
-
            <td width="55" valign="top">
 
-
                <p>
 
-
                    96hrs
 
-
                </p>
 
-
            </td>
 
-
            <td width="83" valign="top">
 
-
            </td>
 
-
            <td width="57" valign="top">
 
-
            </td>
 
-
            <td width="66" valign="top">
 
-
            </td>
 
-
            <td width="60" valign="top">
 
-
            </td>
 
-
        </tr>
 
-
        <tr>
 
-
            <td width="112" valign="top">
 
-
                <p>
 
-
                    Glass
 
-
                </p>
 
-
            </td>
 
-
            <td width="47" valign="top">
 
-
            </td>
 
-
            <td width="55" valign="top">
 
-
            </td>
 
-
            <td width="55" valign="top">
 
-
            </td>
 
-
            <td width="55" valign="top">
 
-
            </td>
 
-
            <td width="83" valign="top">
 
-
            </td>
 
-
            <td width="57" valign="top">
 
-
            </td>
 
-
            <td width="66" valign="top">
 
-
            </td>
 
-
            <td width="60" valign="top">
 
-
            </td>
 
-
        </tr>
 
-
        <tr>
 
-
            <td width="112" valign="top">
 
-
                <p>
 
-
                    Porous
 
-
                </p>
 
-
            </td>
 
-
            <td width="47" valign="top">
 
-
            </td>
 
-
            <td width="55" valign="top">
 
-
            </td>
 
-
            <td width="55" valign="top">
 
-
            </td>
 
-
            <td width="55" valign="top">
 
-
            </td>
 
-
            <td width="83" valign="top">
 
-
            </td>
 
-
            <td width="57" valign="top">
 
-
            </td>
 
-
            <td width="66" valign="top">
 
-
            </td>
 
-
            <td width="60" valign="top">
 
-
            </td>
 
-
        </tr>
 
-
        <tr>
 
-
            <td width="112" valign="top">
 
-
                <p>
 
-
                    Plastic
 
-
                </p>
 
-
            </td>
 
-
            <td width="47" valign="top">
 
-
            </td>
 
-
            <td width="55" valign="top">
 
-
            </td>
 
-
            <td width="55" valign="top">
 
-
            </td>
 
-
            <td width="55" valign="top">
 
-
            </td>
 
-
            <td width="83" valign="top">
 
-
            </td>
 
-
            <td width="57" valign="top">
 
-
            </td>
 
-
            <td width="66" valign="top">
 
-
            </td>
 
-
            <td width="60" valign="top">
 
-
            </td>
 
-
        </tr>
 
-
        <tr>
 
-
            <td width="112" valign="top">
 
-
                <p>
 
-
                    No Nutrient Replacement
 
-
                </p>
 
-
            </td>
 
-
            <td width="47" valign="top">
 
-
            </td>
 
-
            <td width="55" valign="top">
 
-
            </td>
 
-
            <td width="55" valign="top">
 
-
            </td>
 
-
            <td width="55" valign="top">
 
-
            </td>
 
-
            <td width="83" valign="top">
 
-
            </td>
 
-
            <td width="57" valign="top">
 
-
            </td>
 
-
            <td width="66" valign="top">
 
-
            </td>
 
-
            <td width="60" valign="top">
 
-
            </td>
 
-
        </tr>
 
-
        <tr>
 
-
            <td width="112" valign="top">
 
-
                <p>
 
-
                    Glass
 
-
                </p>
 
-
            </td>
 
-
            <td width="47" valign="top">
 
-
            </td>
 
-
            <td width="55" valign="top">
 
-
            </td>
 
-
            <td width="55" valign="top">
 
-
            </td>
 
-
            <td width="55" valign="top">
 
-
            </td>
 
-
            <td width="83" valign="top">
 
-
            </td>
 
-
            <td width="57" valign="top">
 
-
            </td>
 
-
            <td width="66" valign="top">
 
-
            </td>
 
-
            <td width="60" valign="top">
 
-
            </td>
 
-
        </tr>
 
-
        <tr>
 
-
            <td width="112" valign="top">
 
-
                <p>
 
-
                    Porous
 
-
                </p>
 
-
            </td>
 
-
            <td width="47" valign="top">
 
-
            </td>
 
-
            <td width="55" valign="top">
 
-
            </td>
 
-
            <td width="55" valign="top">
 
-
            </td>
 
-
            <td width="55" valign="top">
 
-
            </td>
 
-
            <td width="83" valign="top">
 
-
            </td>
 
-
            <td width="57" valign="top">
 
-
            </td>
 
-
            <td width="66" valign="top">
 
-
            </td>
 
-
            <td width="60" valign="top">
 
-
            </td>
 
-
        </tr>
 
-
        <tr>
 
-
            <td width="112" valign="top">
 
-
                <p>
 
-
                    Plastic
 
-
                </p>
 
-
            </td>
 
-
            <td width="47" valign="top">
 
-
            </td>
 
-
            <td width="55" valign="top">
 
-
            </td>
 
-
            <td width="55" valign="top">
 
-
            </td>
 
-
            <td width="55" valign="top">
 
-
            </td>
 
-
            <td width="83" valign="top">
 
-
            </td>
 
-
            <td width="57" valign="top">
 
-
            </td>
 
-
            <td width="66" valign="top">
 
-
            </td>
 
-
            <td width="60" valign="top">
 
-
            </td>
 
-
        </tr>
 
-
    </tbody>
 
-
</table>
 
-
<p>
 
-
    PYE+AMP
 
-
</p>
 
-
<p>
 
-
    13) return culture plate to incubator.
 
-
</p>
 
-
<p>
 
-
    14) analyze removed cover slip under light microscopy. <strong>(see protocol)</strong>
 
-
</p>
 
-
<p>
 
-
    9/23
 
-
</p>
 
-
<p>
 
-
    Protocol for 0.1% Triton-X-100
 
-
</p>
 
-
<p>
 
-
    <u>Aim:</u>
 
-
    To make 0.1% Triton-X-100 for DAPI staining
 
-
</p>
 
-
<p>
 
-
    <u>Materials:</u>
 
-
</p>
 
-
<p>
 
-
    -100% Triton-X-100
 
-
</p>
 
-
<p>
 
-
    -250ml of sterile PBS
 
-
</p>
 
-
<p>
 
-
    -sterile glass bottle for 250ml solution
 
-
</p>
 
-
<p>
 
-
    <u>Procedure:</u>
 
-
</p>
 
-
<p>
 
-
    1. Add 250ul of 100% Triton X-100 and 249.75ml of dH20 to a glass bottle
 
-
</p>
 
-
<p>
 
-
    2. Storage: Store in tightly closed containter in a cool well-ventillated (area around 25C).
 
-
</p>
 
-
<p>
 
-
    MSDS: <a href="https://fscimage.fishersci.com/msds/24515.htm">https://fscimage.fishersci.com/msds/24515.htm</a>
 
-
</p>
 
-
<p>
 
-
    <a href="http://www.sigmaaldrich.com/etc/medialib/docs/Sigma/Product_Information_Sheet/1/t8532pis.Par.0001.File.tmp/t8532pis.pdf">
 
-
        http://www.sigmaaldrich.com/etc/medialib/docs/Sigma/Product_Information_Sheet/1/t8532pis.Par.0001.File.tmp/t8532pis.pdf
 
-
    </a>
 
-
    (storage info)
 
-
</p>
 

Latest revision as of 03:28, 28 September 2013