Team:Penn/References
From 2013.igem.org
(3 intermediate revisions not shown) | |||
Line 1: | Line 1: | ||
<html lang="en"> | <html lang="en"> | ||
<head> | <head> | ||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | / | + | <title>Penn iGEM</title> |
- | + | <link href="https://googledrive.com/host/0B4ZBZOYYKBzEVHRaZEdUVGo5cjA" type="text/css" rel="stylesheet"/> <!--css--> | |
- | + | <script src="https://googledrive.com/host/0B4ZBZOYYKBzETkFqdnhMeV9fMzA" ></script> <!--jquery--> | |
- | + | ||
- | < | + | |
- | + | ||
- | + | ||
- | </ | + | <script> |
+ | $(document).ready(function($) { | ||
+ | |||
+ | $('.nav_wrap').load('https://googledrive.com/host/0B4ZBZOYYKBzEclFHMmpZcVlydmc'); | ||
+ | }); | ||
+ | </script> | ||
</head> | </head> | ||
+ | |||
<body> | <body> | ||
- | + | <div id = "banner_wrap"> | |
- | < | + | <div class = "banner"></div> |
- | + | </div> | |
- | + | <div id = "nav_holder"> | |
- | + | <div class = "nav_wrap"></div> | |
- | + | </div> | |
+ | </div> | ||
+ | <div id="text"> | ||
+ | <div class = "textwrap"> | ||
<b><center><h1> | <b><center><h1> | ||
References | References | ||
Line 35: | Line 33: | ||
<p> | <p> | ||
Baylin, S. B., Herman, J. G., Graff, J. R., Vertino, P. M., & Issa, J. P. (1998). Alterations in DNA methylation: a fundamental aspect of neoplasia. Adv Cancer Res, 72, 141-196. | Baylin, S. B., Herman, J. G., Graff, J. R., Vertino, P. M., & Issa, J. P. (1998). Alterations in DNA methylation: a fundamental aspect of neoplasia. Adv Cancer Res, 72, 141-196. | ||
- | + | <br> | |
<br> | <br> | ||
Bikard, D., Jiang, W., Samai, P., Hochschild, A., Zhang, F., & Marraffini, L. A. (2013). Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system. Nucleic Acids Res, 41(15), 7429-7437. | Bikard, D., Jiang, W., Samai, P., Hochschild, A., Zhang, F., & Marraffini, L. A. (2013). Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system. Nucleic Acids Res, 41(15), 7429-7437. | ||
- | <br> | + | <br> <br> |
Cong, L., Zhou, R., Kuo, Y. C., Cunniff, M., & Zhang, F. (2012). Comprehensive interrogation of natural TALE DNA-binding modules and transcriptional repressor domains. Nat Commun, 3, 968. | Cong, L., Zhou, R., Kuo, Y. C., Cunniff, M., & Zhang, F. (2012). Comprehensive interrogation of natural TALE DNA-binding modules and transcriptional repressor domains. Nat Commun, 3, 968. | ||
- | + | <br> | |
<br> | <br> | ||
Cooper, D. N., & Youssoufian, H. (1988). The CpG dinucleotide and human genetic disease. Hum Genet, 78(2), 151-155. | Cooper, D. N., & Youssoufian, H. (1988). The CpG dinucleotide and human genetic disease. Hum Genet, 78(2), 151-155. | ||
- | + | <br> | |
<br> | <br> | ||
Darst, R. P., Pardo, C. E., Ai, L., Brown, K. D., & Kladde, M. P. (2010). Bisulfite sequencing of DNA. Curr Protoc Mol Biol, Chapter 7, Unit 7 9 1-17. | Darst, R. P., Pardo, C. E., Ai, L., Brown, K. D., & Kladde, M. P. (2010). Bisulfite sequencing of DNA. Curr Protoc Mol Biol, Chapter 7, Unit 7 9 1-17. | ||
- | + | <br> | |
<br> | <br> | ||
+ | Protein structure prediction on the web: a case study using the Phyre server | ||
+ | Kelley LA and Sternberg MJE. Nature Protocols 4, 363 - 371 (2009) | ||
+ | </br></br> | ||
Daya, S., & Berns, K. I. (2008). Gene therapy using adeno-associated virus vectors. Clin Microbiol Rev, 21(4), 583-593. | Daya, S., & Berns, K. I. (2008). Gene therapy using adeno-associated virus vectors. Clin Microbiol Rev, 21(4), 583-593. | ||
- | <br> | + | <br> <br> |
Desjarlais, J. R., & Berg, J. M. (1992). Toward rules relating zinc finger protein sequences and DNA binding site preferences. Proc Natl Acad Sci U S A, 89(16), 7345-7349. | Desjarlais, J. R., & Berg, J. M. (1992). Toward rules relating zinc finger protein sequences and DNA binding site preferences. Proc Natl Acad Sci U S A, 89(16), 7345-7349. | ||
- | <br> | + | <br> <br> |
Ellis, B. L., Hirsch, M. L., Barker, J. C., Connelly, J. P., Steininger, R. J., 3rd, & Porteus, M. H. (2013). A survey of ex vivo/in vitro transduction efficiency of mammalian primary cells and cell lines with Nine natural adeno-associated virus (AAV1-9) and one engineered adeno-associated virus serotype. Virol J, 10, 74. | Ellis, B. L., Hirsch, M. L., Barker, J. C., Connelly, J. P., Steininger, R. J., 3rd, & Porteus, M. H. (2013). A survey of ex vivo/in vitro transduction efficiency of mammalian primary cells and cell lines with Nine natural adeno-associated virus (AAV1-9) and one engineered adeno-associated virus serotype. Virol J, 10, 74. | ||
- | + | <br> | |
<br> | <br> | ||
Gaj, T., Gersbach, C. A., & Barbas, C. F., 3rd. (2013). ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol, 31(7), 397-405. | Gaj, T., Gersbach, C. A., & Barbas, C. F., 3rd. (2013). ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol, 31(7), 397-405. | ||
- | + | <br> | |
<br> | <br> | ||
Jones, P. A. (1999). DNA methylation in development of bladder cancer. Adv Exp Med Biol, 462, 419-423. | Jones, P. A. (1999). DNA methylation in development of bladder cancer. Adv Exp Med Biol, 462, 419-423. | ||
- | + | <br> | |
<br> | <br> | ||
Jones, P. L., Veenstra, G. J., Wade, P. A., Vermaak, D., Kass, S. U., Landsberger, N., et al. (1998). Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nat Genet, 19(2), 187-191. | Jones, P. L., Veenstra, G. J., Wade, P. A., Vermaak, D., Kass, S. U., Landsberger, N., et al. (1998). Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nat Genet, 19(2), 187-191. | ||
- | <br> | + | <br> <br> |
Klose, R. J., & Bird, A. P. (2006). Genomic DNA methylation: the mark and its mediators. Trends Biochem Sci, 31(2), 89-97. | Klose, R. J., & Bird, A. P. (2006). Genomic DNA methylation: the mark and its mediators. Trends Biochem Sci, 31(2), 89-97. | ||
- | + | <br> | |
<br> | <br> | ||
Line 85: | Line 86: | ||
- | <br> | + | <br> <br> |
Li, F., Papworth, M., Minczuk, M., Rohde, C., Zhang, Y., Ragozin, S., et al. (2007). Chimeric DNA methyltransferases target DNA methylation to specific DNA sequences and repress expression of target genes. Nucleic Acids Res, 35(1), 100-112. | Li, F., Papworth, M., Minczuk, M., Rohde, C., Zhang, Y., Ragozin, S., et al. (2007). Chimeric DNA methyltransferases target DNA methylation to specific DNA sequences and repress expression of target genes. Nucleic Acids Res, 35(1), 100-112. | ||
- | <br> | + | <br> <br> |
Li, L. C., & Dahiya, R. (2002). MethPrimer: designing primers for methylation PCRs. Bioinformatics, 18(11), 1427-1431. | Li, L. C., & Dahiya, R. (2002). MethPrimer: designing primers for methylation PCRs. Bioinformatics, 18(11), 1427-1431. | ||
<br> | <br> | ||
- | + | <br> | |
Nan, X., Cross, S., & Bird, A. (1998). Gene silencing by methyl-CpG-binding proteins. Novartis Found Symp, 214, 6-16; discussion 16-21, 46-50. | Nan, X., Cross, S., & Bird, A. (1998). Gene silencing by methyl-CpG-binding proteins. Novartis Found Symp, 214, 6-16; discussion 16-21, 46-50. | ||
<br> | <br> | ||
- | + | <br> | |
Papworth, M., Kolasinska, P., & Minczuk, M. (2006). Designer zinc-finger proteins and their applications. Gene, 366(1), 27-38. | Papworth, M., Kolasinska, P., & Minczuk, M. (2006). Designer zinc-finger proteins and their applications. Gene, 366(1), 27-38. | ||
- | <br> | + | <br> <br> |
Rideout, W. M., 3rd, Coetzee, G. A., Olumi, A. F., & Jones, P. A. (1990). 5-Methylcytosine as an endogenous mutagen in the human LDL receptor and p53 genes. Science, 249(4974), 1288-1290. | Rideout, W. M., 3rd, Coetzee, G. A., Olumi, A. F., & Jones, P. A. (1990). 5-Methylcytosine as an endogenous mutagen in the human LDL receptor and p53 genes. Science, 249(4974), 1288-1290. | ||
- | <br> | + | <br> <br> |
Sanjana, N. E., Cong, L., Zhou, Y., Cunniff, M. M., Feng, G., & Zhang, F. (2012). A transcription activator-like effector toolbox for genome engineering. Nat Protoc, 7(1), 171-192. | Sanjana, N. E., Cong, L., Zhou, Y., Cunniff, M. M., Feng, G., & Zhang, F. (2012). A transcription activator-like effector toolbox for genome engineering. Nat Protoc, 7(1), 171-192. | ||
- | <br> | + | <br> <br> |
van Steensel, B., & Henikoff, S. (2000). Identification of in vivo DNA targets of chromatin proteins using tethered dam methyltransferase. Nat Biotechnol, 18(4), 424-428. | van Steensel, B., & Henikoff, S. (2000). Identification of in vivo DNA targets of chromatin proteins using tethered dam methyltransferase. Nat Biotechnol, 18(4), 424-428. | ||
<br> | <br> | ||
- | + | <br> | |
Venter, J. C., Adams, M. D., Myers, E. W., Li, P. W., Mural, R. J., Sutton, G. G., et al. (2001). The sequence of the human genome. Science, 291(5507), 1304-1351. | Venter, J. C., Adams, M. D., Myers, E. W., Li, P. W., Mural, R. J., Sutton, G. G., et al. (2001). The sequence of the human genome. Science, 291(5507), 1304-1351. | ||
- | <br> | + | <br> <br> |
Wan, M., Lee, S. S., Zhang, X., Houwink-Manville, I., Song, H. R., Amir, R. E., et al. (1999). Rett syndrome and beyond: recurrent spontaneous and familial MECP2 mutations at CpG hotspots. Am J Hum Genet, 65(6), 1520-1529. | Wan, M., Lee, S. S., Zhang, X., Houwink-Manville, I., Song, H. R., Amir, R. E., et al. (1999). Rett syndrome and beyond: recurrent spontaneous and familial MECP2 mutations at CpG hotspots. Am J Hum Genet, 65(6), 1520-1529. | ||
<br> | <br> | ||
- | + | <br> | |
Wang, H., Yang, H., Shivalila, C. S., Dawlaty, M. M., Cheng, A. W., Zhang, F., et al. (2013). One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell, 153(4), 910-918. | Wang, H., Yang, H., Shivalila, C. S., Dawlaty, M. M., Cheng, A. W., Zhang, F., et al. (2013). One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell, 153(4), 910-918. | ||
<br> | <br> | ||
- | + | <br> | |
Wang, H. H., & Church, G. M. (2011). Multiplexed genome engineering and genotyping methods applications for synthetic biology and metabolic engineering. Methods Enzymol, 498, 409-426. | Wang, H. H., & Church, G. M. (2011). Multiplexed genome engineering and genotyping methods applications for synthetic biology and metabolic engineering. Methods Enzymol, 498, 409-426. | ||
<br> | <br> | ||
- | + | <br> | |
Xiong, Z., & Laird, P. W. (1997). COBRA: a sensitive and quantitative DNA methylation assay. Nucleic Acids Res, 25(12), 2532-2534. | Xiong, Z., & Laird, P. W. (1997). COBRA: a sensitive and quantitative DNA methylation assay. Nucleic Acids Res, 25(12), 2532-2534. | ||
<br> | <br> | ||
- | + | <br> | |
Xu, G. L., & Bestor, T. H. (1997). Cytosine methylation targetted to pre-determined sequences. Nat Genet, 17(4), 376-378. </p></div> | Xu, G. L., & Bestor, T. H. (1997). Cytosine methylation targetted to pre-determined sequences. Nat Genet, 17(4), 376-378. </p></div> | ||
</center> | </center> | ||
Line 143: | Line 144: | ||
</div> | </div> | ||
+ | <div id ="pagefooter"> | ||
+ | <br> | ||
+ | <br> | ||
+ | <center><a href = "https://2013.igem.org/Team:Penn"> Home </a> <a href = "https://static.igem.org/mediawiki/2013/e/e5/Spec_Sheet.pdf" >Spec Sheet</a> <a href = "https://2013.igem.org/Team:Penn/sitemap" >Sitemap</a> | ||
+ | </center> | ||
+ | <br> | ||
+ | Penn iGem © 2013 | ||
+ | </div> | ||
</body> | </body> |
Latest revision as of 20:01, 28 October 2013
References
Baylin, S. B., Herman, J. G., Graff, J. R., Vertino, P. M., & Issa, J. P. (1998). Alterations in DNA methylation: a fundamental aspect of neoplasia. Adv Cancer Res, 72, 141-196.
Bikard, D., Jiang, W., Samai, P., Hochschild, A., Zhang, F., & Marraffini, L. A. (2013). Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system. Nucleic Acids Res, 41(15), 7429-7437.
Cong, L., Zhou, R., Kuo, Y. C., Cunniff, M., & Zhang, F. (2012). Comprehensive interrogation of natural TALE DNA-binding modules and transcriptional repressor domains. Nat Commun, 3, 968.
Cooper, D. N., & Youssoufian, H. (1988). The CpG dinucleotide and human genetic disease. Hum Genet, 78(2), 151-155.
Darst, R. P., Pardo, C. E., Ai, L., Brown, K. D., & Kladde, M. P. (2010). Bisulfite sequencing of DNA. Curr Protoc Mol Biol, Chapter 7, Unit 7 9 1-17.
Protein structure prediction on the web: a case study using the Phyre server
Kelley LA and Sternberg MJE. Nature Protocols 4, 363 - 371 (2009)
Daya, S., & Berns, K. I. (2008). Gene therapy using adeno-associated virus vectors. Clin Microbiol Rev, 21(4), 583-593.
Desjarlais, J. R., & Berg, J. M. (1992). Toward rules relating zinc finger protein sequences and DNA binding site preferences. Proc Natl Acad Sci U S A, 89(16), 7345-7349.
Ellis, B. L., Hirsch, M. L., Barker, J. C., Connelly, J. P., Steininger, R. J., 3rd, & Porteus, M. H. (2013). A survey of ex vivo/in vitro transduction efficiency of mammalian primary cells and cell lines with Nine natural adeno-associated virus (AAV1-9) and one engineered adeno-associated virus serotype. Virol J, 10, 74.
Gaj, T., Gersbach, C. A., & Barbas, C. F., 3rd. (2013). ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol, 31(7), 397-405.
Jones, P. A. (1999). DNA methylation in development of bladder cancer. Adv Exp Med Biol, 462, 419-423.
Jones, P. L., Veenstra, G. J., Wade, P. A., Vermaak, D., Kass, S. U., Landsberger, N., et al. (1998). Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nat Genet, 19(2), 187-191.
Klose, R. J., & Bird, A. P. (2006). Genomic DNA methylation: the mark and its mediators. Trends Biochem Sci, 31(2), 89-97.
Konermann, S., Brigham, M. D., Trevino, A. E., Hsu, P. D., Heidenreich, M., Cong, L., et al. (2013). Optical control of mammalian endogenous transcription and epigenetic states. Nature, 500(7463), 472-476.
Li, F., Papworth, M., Minczuk, M., Rohde, C., Zhang, Y., Ragozin, S., et al. (2007). Chimeric DNA methyltransferases target DNA methylation to specific DNA sequences and repress expression of target genes. Nucleic Acids Res, 35(1), 100-112.
Li, L. C., & Dahiya, R. (2002). MethPrimer: designing primers for methylation PCRs. Bioinformatics, 18(11), 1427-1431.
Nan, X., Cross, S., & Bird, A. (1998). Gene silencing by methyl-CpG-binding proteins. Novartis Found Symp, 214, 6-16; discussion 16-21, 46-50.
Papworth, M., Kolasinska, P., & Minczuk, M. (2006). Designer zinc-finger proteins and their applications. Gene, 366(1), 27-38.
Rideout, W. M., 3rd, Coetzee, G. A., Olumi, A. F., & Jones, P. A. (1990). 5-Methylcytosine as an endogenous mutagen in the human LDL receptor and p53 genes. Science, 249(4974), 1288-1290.
Sanjana, N. E., Cong, L., Zhou, Y., Cunniff, M. M., Feng, G., & Zhang, F. (2012). A transcription activator-like effector toolbox for genome engineering. Nat Protoc, 7(1), 171-192.
van Steensel, B., & Henikoff, S. (2000). Identification of in vivo DNA targets of chromatin proteins using tethered dam methyltransferase. Nat Biotechnol, 18(4), 424-428.
Venter, J. C., Adams, M. D., Myers, E. W., Li, P. W., Mural, R. J., Sutton, G. G., et al. (2001). The sequence of the human genome. Science, 291(5507), 1304-1351.
Wan, M., Lee, S. S., Zhang, X., Houwink-Manville, I., Song, H. R., Amir, R. E., et al. (1999). Rett syndrome and beyond: recurrent spontaneous and familial MECP2 mutations at CpG hotspots. Am J Hum Genet, 65(6), 1520-1529.
Wang, H., Yang, H., Shivalila, C. S., Dawlaty, M. M., Cheng, A. W., Zhang, F., et al. (2013). One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell, 153(4), 910-918.
Wang, H. H., & Church, G. M. (2011). Multiplexed genome engineering and genotyping methods applications for synthetic biology and metabolic engineering. Methods Enzymol, 498, 409-426.
Xiong, Z., & Laird, P. W. (1997). COBRA: a sensitive and quantitative DNA methylation assay. Nucleic Acids Res, 25(12), 2532-2534.
Xu, G. L., & Bestor, T. H. (1997). Cytosine methylation targetted to pre-determined sequences. Nat Genet, 17(4), 376-378.