Team:NTU Taiwan/index.html
From 2013.igem.org
(Difference between revisions)
(9 intermediate revisions not shown) | |||
Line 1: | Line 1: | ||
<html lang="en"> | <html lang="en"> | ||
<head> | <head> | ||
- | <title> | + | <title> iGEM-NTU-Taiwan </title> |
<meta name="viewport" content="width=device-width, initial-scale=1.0"> | <meta name="viewport" content="width=device-width, initial-scale=1.0"> | ||
<meta http-equiv="X-UA-Compatible" content="IE=edge"> | <meta http-equiv="X-UA-Compatible" content="IE=edge"> | ||
Line 199: | Line 199: | ||
<span class="particle particle--b"></span> | <span class="particle particle--b"></span> | ||
</div> | </div> | ||
- | <h1 class=" rainbow-text header"> | + | <h1 class=" rainbow-text header">iGEM-NTU-Taiwan YeasTherm</h1> |
<p class="header container"> | <p class="header container"> | ||
<img class="spin" alt-src="images/LaboratoryLevels.png" src="/wiki/images/9/91/NTU_TAIWAN_LaboratoryLevels.png"><br/> | <img class="spin" alt-src="images/LaboratoryLevels.png" src="/wiki/images/9/91/NTU_TAIWAN_LaboratoryLevels.png"><br/> | ||
National Taiwan University<br/> | National Taiwan University<br/> | ||
- | Working | + | Working on Thermogenic Yeast<br/> |
- | Apps with | + | Apps with concept of iGEM competition and synthetic biology. |
</p> | </p> | ||
</section> | </section> | ||
Line 1,648: | Line 1,648: | ||
<h1 class="header" style="margin: 0">Basic Research</h1> | <h1 class="header" style="margin: 0">Basic Research</h1> | ||
<div class="container"> | <div class="container"> | ||
- | <p class="header" style="margin: 0"> our | + | <p class="header" style="margin: 0"> Our final goal is to express SrUCP in <i>Rhodotorula glutinis</i>. However, hampering by its difficulties in molecular cloning, we take <i>Saccharomyces cerevisiae</i> as our first-hand research material. </p> |
<div id="beaker"> | <div id="beaker"> | ||
<span class="bubble"><span class="glow"> </span></span> | <span class="bubble"><span class="glow"> </span></span> | ||
Line 1,811: | Line 1,811: | ||
</div> | </div> | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
<div id="Suicide"> | <div id="Suicide"> | ||
Line 1,856: | Line 1,848: | ||
<h1 class="header">Applications</h1> | <h1 class="header">Applications</h1> | ||
<div class="container"> | <div class="container"> | ||
- | + | <p class="header" style="margin: 0"> Being an special lipid productive yeast, <i>Rhodotorula glutinis</i> has strong potentiality to become an extraordinary bio-heating device. Let's find out! </p> | |
<div id="beaker"> | <div id="beaker"> | ||
<span class="bubble"><span class="glow"> </span></span> | <span class="bubble"><span class="glow"> </span></span> | ||
Line 1,907: | Line 1,899: | ||
</legend> | </legend> | ||
<p> | <p> | ||
- | In hope of | + | In hope of putting more values in our biological heating device, we strive to improving the sensitivity of our sensor - the cold shock promoter. This final goal can be break down on two parts: 1. tuning the temperature-responsive range of cold shock promoter 2. amplifying its signal under low temperature. In order to understand what kind of structure of a genetic circuit and what kinds of characteristics of activator and repressor are needed for our purpose, we create several mathematical models to explore the problem. In the end, we expect to get some useful information as a guidance to screen possible biological parts when we actually start to construct the genetic circuit. |
</p> | </p> | ||
</div> | </div> | ||
Line 1,990: | Line 1,982: | ||
</tr> | </tr> | ||
<tr class="row"> | <tr class="row"> | ||
- | <td class="col-md-2">β<sub> | + | <td class="col-md-2">β<sub>hsp</sub>(T)<sup>a</sup></td> |
<td class="col-md-5">Maximal production rate of Hsp, a function of temperature</td> | <td class="col-md-5">Maximal production rate of Hsp, a function of temperature</td> | ||
<td class="col-md-3">Sigmoidal curve <br/>(set 37℃=1e-6, 30℃=0) </td> | <td class="col-md-3">Sigmoidal curve <br/>(set 37℃=1e-6, 30℃=0) </td> | ||
- | <td class="col-md-2">M/s | + | <td class="col-md-2">M/s</td> |
</tr> | </tr> | ||
<tr class="row"> | <tr class="row"> | ||
Line 2,170: | Line 2,162: | ||
<div class="container"> | <div class="container"> | ||
- | <br/><p><b>PCR</b></p | + | <br/><p><b>PCR</b></p> |
- | + | 1: Design of appropriate forward and reverse primers<br/> | |
- | + | 2: Prepare our template<br/> | |
- | + | 3: Prepare the PCR mix. (Kapa Hifi PCR kit.)<br/> | |
- | + | 4: Run PCR<br/> | |
- | + | 5: Examine the results by electrophoresis<br/> | |
- | Note: If the template is genomic DNA, we would adjust the annealing temperature at 45°C. It is because the copy number of target gene may be low. We use this annealing temp when perform PCR of Tir1, 26s, 5.8s ITS | + | Note: If the template is genomic DNA, we would adjust the annealing temperature at 45°C. It is because the copy number of target gene may be low. We use this annealing temp when perform PCR of Tir1, 26s, 5.8s ITS<br/><br/> |
- | <br/><p><b>Construction of our parts</b></p>< | + | <br/><p><b>Construction of our parts</b></p><p> |
- | + | 1: We design primers for parts with prefix and suffix.<br/> | |
- | + | 2: Perform PCR and cleanup the PCR product<br/> | |
- | + | 3: Before insert our parts into standard backbone, pSB1C3, we perform RE digestion to make sticky ends of both inserts and backbones.<br/> | |
- | + | 4: Ligation of inserts and backbones<br/> | |
- | + | 5: Transform our ligation products into DH5α and streak the transformed DH5α on LB agar plate with chloramphenicol.<br/> | |
- | + | 6: Inoculate single colony into broth with chloramphenicol.<br/> | |
- | + | 7: Miniprep the plasmid DNA from the overnight broth culture.<br/> | |
- | + | 8: Confirm the products by both RE digestion and PCR sequencing<br/></p> | |
<p><b>Point mutation protocol</b></p> | <p><b>Point mutation protocol</b></p> |
Latest revision as of 04:22, 28 September 2013