Team:UCL/Modeling/Two

From 2013.igem.org

(Difference between revisions)
 
(10 intermediate revisions not shown)
Line 11: Line 11:
<script>
<script>
-
var word1 = "SIMULATION";
+
var word1 = "MODEL";
var word2 = "RESULTS";
var word2 = "RESULTS";
</script>
</script>
Line 46: Line 46:
<div class="full_page">
<div class="full_page">
-
<div class="main_image"></div>
+
<div class="main_image" style="height:515px;background-image:url('https://static.igem.org/mediawiki/2013/e/e7/Display_small.png');" ></div>
-
<p class="major_title">MAJOR TITLE</p>
+
<p class="major_title">SIMULATION DATA</p>
-
<p class="minor_title">Minor Title</p>
+
<p class="minor_title">The power of modeling</p>
<p class="body_text">
<p class="body_text">
-
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Vivamus vel fringilla diam. Integer placerat sapien sed risus mollis, eget hendrerit lorem tincidunt. Cras a sem eros. Ut nec ligula eget tortor ornare tempus sit amet quis risus. Quisque condimentum, ipsum ac rhoncus ornare, tellus augue imperdiet libero, in venenatis justo arcu quis tellus. Vivamus magna libero, tempus ac augue at, placerat vulputate nunc. Praesent fringilla id erat ut sagittis. Sed nec semper risus, nec condimentum leo. Vestibulum pharetra pellentesque augue, non ultrices leo varius et. Vestibulum id egestas orci. Vestibulum metus ipsum, iaculis nec sapien in, fringilla cursus orci. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos himenaeos. Curabitur eget vulputate ligula. Sed venenatis nulla et porta pharetra. Suspendisse pharetra suscipit justo sagittis consequat. Morbi eu iaculis diam, ac rhoncus urna. Pellentesque eros ligula, mollis vitae metus sit amet, interdum gravida nunc. Duis tempor quam id rhoncus sodales. Nunc commodo accumsan orci ut faucibus. Quisque vitae luctus libero. Nullam risus libero, convallis et viverra sit amet, convallis a neque. Integer adipiscing ac arcu sit amet luctus. In dignissim mauris non justo tempor, in rhoncus augue volutpat. Duis euismod sodales blandit. Vivamus volutpat molestie dignissim. Quisque cursus quam cursus dui faucibus convallis. Praesent dignissim, sem ut posuere accumsan, libero diam consequat libero, vel tempor dui mi sed massa. Aenean eros arcu, sollicitudin a euismod eu, placerat vel nunc. Nunc consequat blandit fermentum. Curabitur ante erat, lobortis ac faucibus a, sollicitudin egestas nisi. Morbi ut dolor scelerisque, fermentum est vitae, commodo tortor. Vestibulum ornare semper lorem vel volutpat. In erat ligula, auctor eu pellentesque vitae, sollicitudin id sapien. Duis pharetra sagittis purus hendrerit pharetra. Lorem ipsum dolor sit amet, consectetur adipiscing elit. Vivamus elementum iaculis neque nec fringilla. Nunc a scelerisque nulla, et varius massa. In eu pretium eros. Quisque nec lacus elit. Mauris malesuada luctus dapibus. Vivamus eget ultricies sem. Quisque nulla tellus, euismod vel vehicula adipiscing, ornare sit amet dui. Sed eget mauris aliquam, feugiat diam vel, lacinia nunc. Ut vel est facilisis, dictum sem sit amet, lobortis arcu. In hac habitasse platea dictumst. Fusce ut accumsan sapien. Sed pharetra ullamcorper dolor vitae rutrum. Aliquam luctus mattis felis vitae semper. Vivamus id sodales purus. Cras quis quam non tortor tincidunt laoreet varius suscipit lectus. Curabitur faucibus et libero quis vulputate. Nunc sed gravida libero. Phasellus eleifend, metus mattis molestie luctus, augue libero lacinia massa, ac volutpat tortor tortor quis sapien. Donec ultrices felis ut arcu rutrum sollicitudin. Praesent nec ligula at risus hendrerit aliquam. Etiam vestibulum aliquam ultricies. Ut semper libero volutpat, rutrum enim et, eleifend nibh. Nulla ornare, elit sed laoreet condimentum, quam nunc auctor sem, eu commodo elit ante id magna.  
+
For all the complex calculations and mechanisms behind a model, it is without much worth if it cannot produce useful results. In general, 'useful results' are defined as successful predictions about the effects of modifying some parameter - if we can use a model to determine the effect of each variable upon the outcome, we can better design our system in the real world.
</p>
</p>
-
<div class="gap"></div>
+
<p class="body_text">
 +
The results on this page represent a tiny fraction of the power of our model. Since any variable can be inspected at any time during the simulation, we can generate tables of data for any aspect of the model. Here, we provide a few examples of data output from our model.
 +
</p>
 +
<p class="minor_title">Signal concentration throughout the brain after one simulation</p>
 +
<p class="body_text">
 +
In the image to the right is a diagram of a 2cm diameter spherical section of the brain, showing both signal concentrations once the simulation has finished. Red indicates a high concentration and green a low concentration. Signals are found in higher concentrations where more plaques are located, since the signals are only secreted once a threshold level of oxidative stress is reached. Notice that MMP-9 concentrations are higher than IP-10 concentrations - this is to be expected since the threshold oxidative stress level for MMP-9 is lower than that for IP-10.
 +
</p>
 +
<p class="body_text">
 +
These images were generated by firstly writing signal concentration data to a spreadsheet, then taking the logarithm of these values (since signal concentration varies greatly), and finally by colour-coding these values accordingly.
 +
</p>
 +
 
 +
<p class="minor_title">Microglia effectiveness</p>
 +
<p class="body_text">
 +
Since the entire project is concerned with the clearing of amyloid plaques, the main useful result from the model is the effect of changing each variable upon the ability of microglia to locate and degrade these plaques. Below are three graphs showing this. In the simulations behind these graphs, a number of microglia were introduced into the system at the same location, and the time taken for 50% of the plaques within a 10mm radius to be removed was measured.
 +
</p>
 +
 
 +
<div class="image_middle" style="height:659px;background-image:url('https://static.igem.org/mediawiki/2013/3/3c/Graph1.png');border-bottom:0px;" ></div>
 +
<div class="image_middle" style="height:658px;background-image:url('https://static.igem.org/mediawiki/2013/9/94/Graph56.png');border-bottom:0px;" ></div>
 +
<div class="image_middle" style="height:656px;background-image:url('https://static.igem.org/mediawiki/2013/0/09/Graph33.png');" ></div>
<!-- END CONTENT ------------------------------------------------------------------------------------------------------>
<!-- END CONTENT ------------------------------------------------------------------------------------------------------>
</div>
</div>

Latest revision as of 01:16, 5 October 2013

SIMULATION DATA

The power of modeling

For all the complex calculations and mechanisms behind a model, it is without much worth if it cannot produce useful results. In general, 'useful results' are defined as successful predictions about the effects of modifying some parameter - if we can use a model to determine the effect of each variable upon the outcome, we can better design our system in the real world.

The results on this page represent a tiny fraction of the power of our model. Since any variable can be inspected at any time during the simulation, we can generate tables of data for any aspect of the model. Here, we provide a few examples of data output from our model.

Signal concentration throughout the brain after one simulation

In the image to the right is a diagram of a 2cm diameter spherical section of the brain, showing both signal concentrations once the simulation has finished. Red indicates a high concentration and green a low concentration. Signals are found in higher concentrations where more plaques are located, since the signals are only secreted once a threshold level of oxidative stress is reached. Notice that MMP-9 concentrations are higher than IP-10 concentrations - this is to be expected since the threshold oxidative stress level for MMP-9 is lower than that for IP-10.

These images were generated by firstly writing signal concentration data to a spreadsheet, then taking the logarithm of these values (since signal concentration varies greatly), and finally by colour-coding these values accordingly.

Microglia effectiveness

Since the entire project is concerned with the clearing of amyloid plaques, the main useful result from the model is the effect of changing each variable upon the ability of microglia to locate and degrade these plaques. Below are three graphs showing this. In the simulations behind these graphs, a number of microglia were introduced into the system at the same location, and the time taken for 50% of the plaques within a 10mm radius to be removed was measured.