Team:Dundee

From 2013.igem.org

(Difference between revisions)
 
(One intermediate revision not shown)
Line 39: Line 39:
         <div class="span6" style="text-align:justify">
         <div class="span6" style="text-align:justify">
         <h2 style="margin-top:-10px;"> Targeting a Deadly Toxin</h2>
         <h2 style="margin-top:-10px;"> Targeting a Deadly Toxin</h2>
-
        <p> Algal blooms occur seasonally worldwide. These blooms are harmful to humans because many of these algae release toxins which affect critical cellular processes with potentially devastating effects. One of the most harmful of these toxins is microcystin, a cyclic peptide produced by the cyanobacteria <i>Microcystis aeruginosa</i>, which permanently disables protein phosphatases 1 and 2A, each of which have integral roles in critical cellular processes such as the cell cycle. This microcystin is a real problem, with the average concentration of microcystin in US lakes with a cyanobacterial bloom being 1000 times over the WHO safe drinking water limit. <br><br>
 
-
Inspired by a harmful algal bloom containing these <i>M. aeruginosa</i> cyanobacteria in the local community, the Dundee iGEM team learnt about how they could use synthetic biology to create a new technology which could potentially solve this problem. Using <i>E. coli</i>, the team built a biological mop for microcystin: ToxiMop. Engineering <i>E. coli</i> to produce PP1 in its periplasm, where it can interact with microcystin and neutralise the toxin.
+
        <p>
-
</p>
+
        Explosions in the population of cyanobacteria can produce toxic algal blooms. Microcystin-LR the most potent and common algal bloom toxin, binds Protein Phosphatase 1. The average cyanobacteria infested lake in America contains over 1000 times the Microcystin safe drinking water limit set by the World Health Organisation. <br><br>
 +
 
 +
        Concerned by a harmful algal bloom in the local community, we used synthetic biology to target the toxin. We exploited the mechanism of Microcystin's toxicity to develop our Mop; by expressing Protein Phosphatase 1 we can mop up Microcystin. The interaction was also the basis for developing a biological Detector. To deploy our Detector and to consider the root causes of algal blooms we created the electronic Moptopus. It sits on a lake and monitors conditions relevant to cyanobacterial growth to help predict future blooms.
 +
        </p>
 +
 
         <br>
         <br>
         </div>
         </div>
Line 63: Line 66:
       <div class="row">
       <div class="row">
-
       <div class="span3 style="height:275px">
+
       <div class="span3" style="height:275px">
         <div id="mainwrapper">
         <div id="mainwrapper">
         <a href="https://2013.igem.org/Team:Dundee/Project">
         <a href="https://2013.igem.org/Team:Dundee/Project">
Line 76: Line 79:
       </div>
       </div>
-
       <div class="span3 style="height:275px">
+
       <div class="span3" style="height:275px">
           <div id="mainwrapper">
           <div id="mainwrapper">
         <a href="https://2013.igem.org/Team:Dundee/Project/Detector">
         <a href="https://2013.igem.org/Team:Dundee/Project/Detector">
Line 89: Line 92:
         </div>
         </div>
-
       <div class="span3 style="height:275px">
+
       <div class="span3" style="height:275px">
         <div id="mainwrapper">
         <div id="mainwrapper">
         <a href="https://2013.igem.org/Team:Dundee/Project/SoftwareTheory">
         <a href="https://2013.igem.org/Team:Dundee/Project/SoftwareTheory">
Line 102: Line 105:
         </div>
         </div>
-
       <div class="span3 style="height:275px">
+
       <div class="span3" style="height:275px">
           <div id="mainwrapper">
           <div id="mainwrapper">
         <a href="https://2013.igem.org/Team:Dundee/HumanPractice">
         <a href="https://2013.igem.org/Team:Dundee/HumanPractice">
Line 110: Line 113:
               <span class="caption scale-caption" style="text-align:justify">
               <span class="caption scale-caption" style="text-align:justify">
-
                           <p><b style="font-size:16px;">Human Practices</b><br><br>Our project was motivated by the restrictions put in place at local reservoirs due to algal bloom outbreaks.</p>
+
                           <p><b style="font-size:16px;">Human Practices</b><br><br>This project has been carried out in collaboration with the community. By informing, listening and responding to their input, our project is based around community defined need, and is not merely a technical exercise. </p>
               </span>
               </span>
             </div>
             </div>

Latest revision as of 23:35, 28 October 2013

iGEM Dundee 2013 · ToxiMop

Targeting a Deadly Toxin

Explosions in the population of cyanobacteria can produce toxic algal blooms. Microcystin-LR the most potent and common algal bloom toxin, binds Protein Phosphatase 1. The average cyanobacteria infested lake in America contains over 1000 times the Microcystin safe drinking water limit set by the World Health Organisation.

Concerned by a harmful algal bloom in the local community, we used synthetic biology to target the toxin. We exploited the mechanism of Microcystin's toxicity to develop our Mop; by expressing Protein Phosphatase 1 we can mop up Microcystin. The interaction was also the basis for developing a biological Detector. To deploy our Detector and to consider the root causes of algal blooms we created the electronic Moptopus. It sits on a lake and monitors conditions relevant to cyanobacterial growth to help predict future blooms.