Switch Model
From 2013.igem.org
Line 67: | Line 67: | ||
&\text{\phantom{nn}}+ \frac{1}{2}ln(\frac{[\text{OFF}]_0-[\text{OFF}]_{\infty_2}}{[\text{OFF}]_2-[\text{OFF}]_{\infty_2}})\frac{1-[\text{OFF}]_{\infty_2}}{t_2}[\text{Hbif}]_2^{\frac{ln\left(\frac{ ln\big(\frac{[\text{OFF}]_0-[\text{OFF}]_{\infty_1}}{[\text{OFF}]_1-[\text{OFF}]_{\infty_1}}\big)\frac{1-[\text{OFF}]_{\infty_1}}{t_1} }{ ln\big(\frac{[\text{OFF}]_0-[\text{OFF}]_{\infty_2}}{[\text{OFF}]_2-[\text{OFF}]_{\infty_2}}\big)\frac{1-[\text{OFF}]_{\infty_2}}{t_2} }\right)}{ln(\frac{[\text{Hbif}]_1}{[\text{Hbif}]_2})}} | &\text{\phantom{nn}}+ \frac{1}{2}ln(\frac{[\text{OFF}]_0-[\text{OFF}]_{\infty_2}}{[\text{OFF}]_2-[\text{OFF}]_{\infty_2}})\frac{1-[\text{OFF}]_{\infty_2}}{t_2}[\text{Hbif}]_2^{\frac{ln\left(\frac{ ln\big(\frac{[\text{OFF}]_0-[\text{OFF}]_{\infty_1}}{[\text{OFF}]_1-[\text{OFF}]_{\infty_1}}\big)\frac{1-[\text{OFF}]_{\infty_1}}{t_1} }{ ln\big(\frac{[\text{OFF}]_0-[\text{OFF}]_{\infty_2}}{[\text{OFF}]_2-[\text{OFF}]_{\infty_2}}\big)\frac{1-[\text{OFF}]_{\infty_2}}{t_2} }\right)}{ln(\frac{[\text{Hbif}]_1}{[\text{Hbif}]_2})}} | ||
\end{align*} | \end{align*} | ||
- | \begin{ | + | |
- | k_{F} | + | |
- | + | \begin{equation*} | |
- | + | k_{F} = \frac{1}{2}ln(\frac{[\text{ON}]_0-[\text{ON}]_{\infty_1}}{[\text{ON}]_1-[\text{ON}]_{\infty_1}})\frac{1-[\text{ON}]_{\infty_1}}{t_1}[\text{FimE}]_1^{\frac{ln\left(\frac{ ln\big(\frac{[\text{ON}]_0-[\text{ON}]_{\infty_1}}{[\text{ON}]_1-[\text{ON}]_{\infty_1}}\big)\frac{1-[\text{ON}]_{\infty_1}}{t_1} }{ ln\big(\frac{[\text{ON}]_0-[\text{ON}]_{\infty_2}}{[\text{ON}]_2-[\text{ON}]_{\infty_2}}\big)\frac{1-[\text{ON}]_{\infty_2}}{t_2} }\right)}{ln(\frac{[\text{FimE}]_1}{[\text{FimE}]_2})}} + \frac{1}{2}ln(\frac{[\text{ON}]_0-[\text{ON}]_{\infty_2}}{[\text{ON}]_2-[\text{ON}]_{\infty_2}})\frac{1-[\text{ON}]_{\infty_2}}{t_2}[\text{FimE}]_2^{\frac{ln\left(\frac{ ln\big(\frac{[\text{ON}]_0-[\text{ON}]_{\infty_1}}{[\text{ON}]_1-[\text{ON}]_{\infty_1}}\big)\frac{1-[\text{ON}]_{\infty_1}}{t_1} }{ ln\big(\frac{[\text{ON}]_0-[\text{ON}]_{\infty_2}}{[\text{ON}]_2-[\text{ON}]_{\infty_2}}\big)\frac{1-[\text{ON}]_{\infty_2}}{t_2} }\right)}{ln(\frac{[\text{FimE}]_1}{[\text{FimE}]_2})}} = \frac{1}{2}ln(\frac{[\text{OFF}]_0-[\text{OFF}]_{\infty_1}}{[\text{OFF}]_1-[\text{OFF}]_{\infty_1}})\frac{[\text{OFF}]_{\infty_1}}{t_1}[\text{FimE}]_1^{\frac{ln\left(\frac{ ln\big(\frac{[\text{OFF}]_0-[\text{OFF}]_{\infty_1}}{[\text{OFF}]_1-[\text{OFF}]_{\infty_1}}\big)\frac{[\text{OFF}]_{\infty_1}}{t_1} }{ ln\big(\frac{[\text{OFF}]_0-[\text{OFF}]_{\infty_2}}{[\text{OFF}]_2-[\text{OFF}]_{\infty_2}}\big)\frac{[\text{OFF}]_{\infty_2}}{t_2} }\right)}{ln(\frac{[\text{FimE}]_1}{[\text{FimE}]_2})}} + \frac{1}{2}ln(\frac{[\text{OFF}]_0-[\text{OFF}]_{\infty_2}}{[\text{OFF}]_2-[\text{OFF}]_{\infty_2}})\frac{[\text{OFF}]_{\infty_2}}{t_2}[\text{FimE}]_2^{\frac{ln\left(\frac{ ln\big(\frac{[\text{OFF}]_0-[\text{OFF}]_{\infty_1}}{[\text{OFF}]_1-[\text{OFF}]_{\infty_1}}\big)\frac{[\text{OFF}]_{\infty_1}}{t_1} }{ ln\big(\frac{[\text{OFF}]_0-[\text{OFF}]_{\infty_2}}{[\text{OFF}]_2-[\text{OFF}]_{\infty_2}}\big)\frac{[\text{OFF}]_{\infty_2}}{t_2} }\right)}{ln(\frac{[\text{FimE}]_1}{[\text{FimE}]_2})}} | |
- | + | \end{equation*} | |
- | \end{ | + |
Revision as of 22:03, 6 September 2013
system:
\begin{equation*}
[\text{ON}]'=k_\text{H}[\text{Hbif}]^m[\text{OFF}]-k_\text{F}[\text{FimE}]^n[\text{ON}]
\end{equation*}
\begin{equation*}
[\text{OFF}]'=k_\text{F}[\text{FimE}]^n[\text{ON}]-k_\text{H}[\text{Hbif}]^m[\text{OFF}]
\end{equation*}
\begin{equation*}
[\text{FimE}]'=0
\end{equation*}
\begin{equation*}
[\text{Hbif}]'=0
\end{equation*}
conservation equation:
\begin{equation*}
[\text{ON}]+[\text{OFF}]=1
\end{equation*}
reduced model:
\begin{equation*}
[\text{ON}]'=k_\text{H}[\text{Hbif}]^m-(k_\text{H}[\text{Hbif}]^m+k_\text{F}[\text{FimE}]^n)[\text{ON}]
\end{equation*}
\begin{equation*}
[\text{FimE}]'=0
\end{equation*}
\begin{equation*}
[\text{Hbif}]'=0
\end{equation*}
steady state: \\
if $k_\text{H}[\text{Hbif}]^m+k_\text{F}[\text{FimE}]^n \neq 0$,
\begin{equation*}
[\text{ON}]_\infty=\frac{k_\text{H}[\text{Hbif}]^m}{k_\text{H}[\text{Hbif}]^m+k_\text{F}[\text{FimE}]^n}
\end{equation*}
\begin{equation*}
[\text{OFF}]_\infty=\frac{k_\text{F}[\text{FimE}]^n}{k_\text{H}[\text{Hbif}]^m+k_\text{F}[\text{FimE}]^n}
\end{equation*}
if $k_\text{H}[\text{Hbif}]^m=k_\text{F}[\text{FimE}]^n=0$,
\begin{equation*}
[\text{ON}]_\infty=[\text{ON}]_0
\end{equation*}
\begin{equation*}
[\text{OFF}]_\infty=1-[\text{ON}]_\infty=1-[\text{ON}]_0=[\text{OFF}]_0
\end{equation*}
calibration:
\begin{equation*}
m=\frac{ln\left(\frac{ ln\big(\frac{[\text{ON}]_0-[\text{ON}]_{\infty_1}}{[\text{ON}]_1-[\text{ON}]_{\infty_1}}\big)\frac{[\text{ON}]_{\infty_1}}{t_1} }{ ln\big(\frac{[\text{ON}]_0-[\text{ON}]_{\infty_2}}{[\text{ON}]_2-[\text{ON}]_{\infty_2}}\big)\frac{[\text{ON}]_{\infty_2}}{t_2} }\right)}{ln\big(\frac{[\text{Hbif}]_1}{[\text{Hbif}]_2}\big)} = \frac{ln\left(\frac{ ln\big(\frac{[\text{OFF}]_0-[\text{OFF}]_{\infty_1}}{[\text{OFF}]_1-[\text{OFF}]_{\infty_1}}\big)\frac{1-[\text{OFF}]_{\infty_1}}{t_1} }{ ln\big(\frac{[\text{OFF}]_0-[\text{OFF}]_{\infty_2}}{[\text{OFF}]_2-[\text{OFF}]_{\infty_2}}\big)\frac{1-[\text{OFF}]_{\infty_2}}{t_2} }\right)}{ln\big(\frac{[\text{Hbif}]_1}{[\text{Hbif}]_2}\big)}
\end{equation*}
\begin{equation*}
n=\frac{ln\left(\frac{ ln\big(\frac{[\text{ON}]_0-[\text{ON}]_{\infty_1}}{[\text{ON}]_1-[\text{ON}]_{\infty_1}}\big)\frac{1-[\text{ON}]_{\infty_1}}{t_1} }{ ln\big(\frac{[\text{ON}]_0-[\text{ON}]_{\infty_2}}{[\text{ON}]_2-[\text{ON}]_{\infty_2}}\big)\frac{1-[\text{ON}]_{\infty_2}}{t_2} }\right)}{ln\big(\frac{[\text{FimE}]_1}{[\text{FimE}]_2}\big)} = \frac{ln\left(\frac{ ln\big(\frac{[\text{OFF}]_0-[\text{OFF}]_{\infty_1}}{[\text{OFF}]_1-[\text{OFF}]_{\infty_1}}\big)\frac{[\text{OFF}]_{\infty_1}}{t_1} }{ ln\big(\frac{[\text{OFF}]_0-[\text{OFF}]_{\infty_2}}{[\text{OFF}]_2-[\text{OFF}]_{\infty_2}}\big)\frac{[\text{OFF}]_{\infty_2}}{t_2} }\right)}{ln\big(\frac{[\text{FimE}]_1}{[\text{FimE}]_2}\big)}
\end{equation*}
\begin{align*}
k_{H} &= \frac{1}{2}ln\big(\frac{[\text{ON}]_0-[\text{ON}]_{\infty_1}}{[\text{ON}]_1-[\text{ON}]_{\infty_1}}\big)\frac{[\text{ON}]_{\infty_1}}{t_1}[\text{Hbif}]_1^{\frac{ln\left(\frac{ ln\big(\frac{[\text{ON}]_0-[\text{ON}]_{\infty_1}}{[\text{ON}]_1-[\text{ON}]_{\infty_1}}\big)\frac{[\text{ON}]_{\infty_1}}{t_1} }{ ln\big(\frac{[\text{ON}]_0-[\text{ON}]_{\infty_2}}{[\text{ON}]_2-[\text{ON}]_{\infty_2}}\big)\frac{[\text{ON}]_{\infty_2}}{t_2} }\right)}{ln(\frac{[\text{Hbif}]_1}{[\text{Hbif}]_2})}} \\
&\text{\phantom{nn}}+ \frac{1}{2}ln(\frac{[\text{ON}]_0-[\text{ON}]_{\infty_2}}{[\text{ON}]_2-[\text{ON}]_{\infty_2}})\frac{[\text{ON}]_{\infty_2}}{t_2}[\text{Hbif}]_2^{\frac{ln\left(\frac{ ln\big(\frac{[\text{ON}]_0-[\text{ON}]_{\infty_1}}{[\text{ON}]_1-[\text{ON}]_{\infty_1}}\big)\frac{[\text{ON}]_{\infty_1}}{t_1} }{ ln\big(\frac{[\text{ON}]_0-[\text{ON}]_{\infty_2}}{[\text{ON}]_2-[\text{ON}]_{\infty_2}}\big)\frac{[\text{ON}]_{\infty_2}}{t_2} }\right)}{ln(\frac{[\text{Hbif}]_1}{[\text{Hbif}]_2})}} \\
&= \frac{1}{2}ln(\frac{[\text{OFF}]_0-[\text{OFF}]_{\infty_1}}{[\text{OFF}]_1-[\text{OFF}]_{\infty_1}})\frac{1-[\text{OFF}]_{\infty_1}}{t_1}[\text{Hbif}]_1^{\frac{ln\left(\frac{ ln\big(\frac{[\text{OFF}]_0-[\text{OFF}]_{\infty_1}}{[\text{OFF}]_1-[\text{OFF}]_{\infty_1}}\big)\frac{1-[\text{OFF}]_{\infty_1}}{t_1} }{ ln\big(\frac{[\text{OFF}]_0-[\text{OFF}]_{\infty_2}}{[\text{OFF}]_2-[\text{OFF}]_{\infty_2}}\big)\frac{1-[\text{OFF}]_{\infty_2}}{t_2} }\right)}{ln(\frac{[\text{Hbif}]_1}{[\text{Hbif}]_2})}} \\
&\text{\phantom{nn}}+ \frac{1}{2}ln(\frac{[\text{OFF}]_0-[\text{OFF}]_{\infty_2}}{[\text{OFF}]_2-[\text{OFF}]_{\infty_2}})\frac{1-[\text{OFF}]_{\infty_2}}{t_2}[\text{Hbif}]_2^{\frac{ln\left(\frac{ ln\big(\frac{[\text{OFF}]_0-[\text{OFF}]_{\infty_1}}{[\text{OFF}]_1-[\text{OFF}]_{\infty_1}}\big)\frac{1-[\text{OFF}]_{\infty_1}}{t_1} }{ ln\big(\frac{[\text{OFF}]_0-[\text{OFF}]_{\infty_2}}{[\text{OFF}]_2-[\text{OFF}]_{\infty_2}}\big)\frac{1-[\text{OFF}]_{\infty_2}}{t_2} }\right)}{ln(\frac{[\text{Hbif}]_1}{[\text{Hbif}]_2})}}
\end{align*}
\begin{equation*}
k_{F} = \frac{1}{2}ln(\frac{[\text{ON}]_0-[\text{ON}]_{\infty_1}}{[\text{ON}]_1-[\text{ON}]_{\infty_1}})\frac{1-[\text{ON}]_{\infty_1}}{t_1}[\text{FimE}]_1^{\frac{ln\left(\frac{ ln\big(\frac{[\text{ON}]_0-[\text{ON}]_{\infty_1}}{[\text{ON}]_1-[\text{ON}]_{\infty_1}}\big)\frac{1-[\text{ON}]_{\infty_1}}{t_1} }{ ln\big(\frac{[\text{ON}]_0-[\text{ON}]_{\infty_2}}{[\text{ON}]_2-[\text{ON}]_{\infty_2}}\big)\frac{1-[\text{ON}]_{\infty_2}}{t_2} }\right)}{ln(\frac{[\text{FimE}]_1}{[\text{FimE}]_2})}} + \frac{1}{2}ln(\frac{[\text{ON}]_0-[\text{ON}]_{\infty_2}}{[\text{ON}]_2-[\text{ON}]_{\infty_2}})\frac{1-[\text{ON}]_{\infty_2}}{t_2}[\text{FimE}]_2^{\frac{ln\left(\frac{ ln\big(\frac{[\text{ON}]_0-[\text{ON}]_{\infty_1}}{[\text{ON}]_1-[\text{ON}]_{\infty_1}}\big)\frac{1-[\text{ON}]_{\infty_1}}{t_1} }{ ln\big(\frac{[\text{ON}]_0-[\text{ON}]_{\infty_2}}{[\text{ON}]_2-[\text{ON}]_{\infty_2}}\big)\frac{1-[\text{ON}]_{\infty_2}}{t_2} }\right)}{ln(\frac{[\text{FimE}]_1}{[\text{FimE}]_2})}} = \frac{1}{2}ln(\frac{[\text{OFF}]_0-[\text{OFF}]_{\infty_1}}{[\text{OFF}]_1-[\text{OFF}]_{\infty_1}})\frac{[\text{OFF}]_{\infty_1}}{t_1}[\text{FimE}]_1^{\frac{ln\left(\frac{ ln\big(\frac{[\text{OFF}]_0-[\text{OFF}]_{\infty_1}}{[\text{OFF}]_1-[\text{OFF}]_{\infty_1}}\big)\frac{[\text{OFF}]_{\infty_1}}{t_1} }{ ln\big(\frac{[\text{OFF}]_0-[\text{OFF}]_{\infty_2}}{[\text{OFF}]_2-[\text{OFF}]_{\infty_2}}\big)\frac{[\text{OFF}]_{\infty_2}}{t_2} }\right)}{ln(\frac{[\text{FimE}]_1}{[\text{FimE}]_2})}} + \frac{1}{2}ln(\frac{[\text{OFF}]_0-[\text{OFF}]_{\infty_2}}{[\text{OFF}]_2-[\text{OFF}]_{\infty_2}})\frac{[\text{OFF}]_{\infty_2}}{t_2}[\text{FimE}]_2^{\frac{ln\left(\frac{ ln\big(\frac{[\text{OFF}]_0-[\text{OFF}]_{\infty_1}}{[\text{OFF}]_1-[\text{OFF}]_{\infty_1}}\big)\frac{[\text{OFF}]_{\infty_1}}{t_1} }{ ln\big(\frac{[\text{OFF}]_0-[\text{OFF}]_{\infty_2}}{[\text{OFF}]_2-[\text{OFF}]_{\infty_2}}\big)\frac{[\text{OFF}]_{\infty_2}}{t_2} }\right)}{ln(\frac{[\text{FimE}]_1}{[\text{FimE}]_2})}}
\end{equation*}