Switch Model
From 2013.igem.org
Line 16: | Line 16: | ||
[\text{ON}]'=k_\text{H}[\text{Hbif}]^m[\text{OFF}]-k_\text{F}[\text{FimE}]^n[\text{ON}] | [\text{ON}]'=k_\text{H}[\text{Hbif}]^m[\text{OFF}]-k_\text{F}[\text{FimE}]^n[\text{ON}] | ||
\end{equation*} | \end{equation*} | ||
+ | |||
\begin{equation*} | \begin{equation*} | ||
[\text{OFF}]'=k_\text{F}[\text{FimE}]^n[\text{ON}]-k_\text{H}[\text{Hbif}]^m[\text{OFF}] | [\text{OFF}]'=k_\text{F}[\text{FimE}]^n[\text{ON}]-k_\text{H}[\text{Hbif}]^m[\text{OFF}] | ||
\end{equation*} | \end{equation*} | ||
+ | |||
\begin{equation*} | \begin{equation*} | ||
[\text{FimE}]'=0 | [\text{FimE}]'=0 | ||
\end{equation*} | \end{equation*} | ||
+ | |||
\begin{equation*} | \begin{equation*} | ||
[\text{Hbif}]'=0 | [\text{Hbif}]'=0 | ||
\end{equation*} | \end{equation*} | ||
+ | |||
conservation equation: | conservation equation: | ||
\begin{equation*} | \begin{equation*} | ||
[\text{ON}]+[\text{OFF}]=1 | [\text{ON}]+[\text{OFF}]=1 | ||
\end{equation*} | \end{equation*} | ||
+ | |||
reduced model: | reduced model: | ||
\begin{equation*} | \begin{equation*} | ||
[\text{ON}]'=k_\text{H}[\text{Hbif}]^m-(k_\text{H}[\text{Hbif}]^m+k_\text{F}[\text{FimE}]^n)[\text{ON}] | [\text{ON}]'=k_\text{H}[\text{Hbif}]^m-(k_\text{H}[\text{Hbif}]^m+k_\text{F}[\text{FimE}]^n)[\text{ON}] | ||
\end{equation*} | \end{equation*} | ||
+ | |||
\begin{equation*} | \begin{equation*} | ||
[\text{FimE}]'=0 | [\text{FimE}]'=0 | ||
\end{equation*} | \end{equation*} | ||
+ | |||
\begin{equation*} | \begin{equation*} | ||
[\text{Hbif}]'=0 | [\text{Hbif}]'=0 | ||
\end{equation*} | \end{equation*} | ||
+ | |||
steady state: \\ | steady state: \\ | ||
if $k_\text{H}[\text{Hbif}]^m+k_\text{F}[\text{FimE}]^n \neq 0$, | if $k_\text{H}[\text{Hbif}]^m+k_\text{F}[\text{FimE}]^n \neq 0$, | ||
+ | |||
\begin{equation*} | \begin{equation*} | ||
[\text{ON}]_\infty=\frac{k_\text{H}[\text{Hbif}]^m}{k_\text{H}[\text{Hbif}]^m+k_\text{F}[\text{FimE}]^n} | [\text{ON}]_\infty=\frac{k_\text{H}[\text{Hbif}]^m}{k_\text{H}[\text{Hbif}]^m+k_\text{F}[\text{FimE}]^n} | ||
\end{equation*} | \end{equation*} | ||
+ | |||
\begin{equation*} | \begin{equation*} | ||
[\text{OFF}]_\infty=\frac{k_\text{F}[\text{FimE}]^n}{k_\text{H}[\text{Hbif}]^m+k_\text{F}[\text{FimE}]^n} | [\text{OFF}]_\infty=\frac{k_\text{F}[\text{FimE}]^n}{k_\text{H}[\text{Hbif}]^m+k_\text{F}[\text{FimE}]^n} | ||
\end{equation*} | \end{equation*} | ||
+ | |||
if $k_\text{H}[\text{Hbif}]^m=k_\text{F}[\text{FimE}]^n=0$, | if $k_\text{H}[\text{Hbif}]^m=k_\text{F}[\text{FimE}]^n=0$, | ||
\begin{equation*} | \begin{equation*} | ||
[\text{ON}]_\infty=[\text{ON}]_0 | [\text{ON}]_\infty=[\text{ON}]_0 | ||
\end{equation*} | \end{equation*} | ||
+ | |||
\begin{equation*} | \begin{equation*} | ||
[\text{OFF}]_\infty=1-[\text{ON}]_\infty=1-[\text{ON}]_0=[\text{OFF}]_0 | [\text{OFF}]_\infty=1-[\text{ON}]_\infty=1-[\text{ON}]_0=[\text{OFF}]_0 | ||
\end{equation*} | \end{equation*} | ||
+ | |||
calibration: | calibration: | ||
\begin{equation*} | \begin{equation*} | ||
m=\frac{ln\left(\frac{ ln\big(\frac{[\text{ON}]_0-[\text{ON}]_{\infty_1}}{[\text{ON}]_1-[\text{ON}]_{\infty_1}}\big)\frac{[\text{ON}]_{\infty_1}}{t_1} }{ ln\big(\frac{[\text{ON}]_0-[\text{ON}]_{\infty_2}}{[\text{ON}]_2-[\text{ON}]_{\infty_2}}\big)\frac{[\text{ON}]_{\infty_2}}{t_2} }\right)}{ln\big(\frac{[\text{Hbif}]_1}{[\text{Hbif}]_2}\big)} = \frac{ln\left(\frac{ ln\big(\frac{[\text{OFF}]_0-[\text{OFF}]_{\infty_1}}{[\text{OFF}]_1-[\text{OFF}]_{\infty_1}}\big)\frac{1-[\text{OFF}]_{\infty_1}}{t_1} }{ ln\big(\frac{[\text{OFF}]_0-[\text{OFF}]_{\infty_2}}{[\text{OFF}]_2-[\text{OFF}]_{\infty_2}}\big)\frac{1-[\text{OFF}]_{\infty_2}}{t_2} }\right)}{ln\big(\frac{[\text{Hbif}]_1}{[\text{Hbif}]_2}\big)} | m=\frac{ln\left(\frac{ ln\big(\frac{[\text{ON}]_0-[\text{ON}]_{\infty_1}}{[\text{ON}]_1-[\text{ON}]_{\infty_1}}\big)\frac{[\text{ON}]_{\infty_1}}{t_1} }{ ln\big(\frac{[\text{ON}]_0-[\text{ON}]_{\infty_2}}{[\text{ON}]_2-[\text{ON}]_{\infty_2}}\big)\frac{[\text{ON}]_{\infty_2}}{t_2} }\right)}{ln\big(\frac{[\text{Hbif}]_1}{[\text{Hbif}]_2}\big)} = \frac{ln\left(\frac{ ln\big(\frac{[\text{OFF}]_0-[\text{OFF}]_{\infty_1}}{[\text{OFF}]_1-[\text{OFF}]_{\infty_1}}\big)\frac{1-[\text{OFF}]_{\infty_1}}{t_1} }{ ln\big(\frac{[\text{OFF}]_0-[\text{OFF}]_{\infty_2}}{[\text{OFF}]_2-[\text{OFF}]_{\infty_2}}\big)\frac{1-[\text{OFF}]_{\infty_2}}{t_2} }\right)}{ln\big(\frac{[\text{Hbif}]_1}{[\text{Hbif}]_2}\big)} | ||
\end{equation*} | \end{equation*} | ||
+ | |||
\begin{equation*} | \begin{equation*} | ||
n=\frac{ln\left(\frac{ ln\big(\frac{[\text{ON}]_0-[\text{ON}]_{\infty_1}}{[\text{ON}]_1-[\text{ON}]_{\infty_1}}\big)\frac{1-[\text{ON}]_{\infty_1}}{t_1} }{ ln\big(\frac{[\text{ON}]_0-[\text{ON}]_{\infty_2}}{[\text{ON}]_2-[\text{ON}]_{\infty_2}}\big)\frac{1-[\text{ON}]_{\infty_2}}{t_2} }\right)}{ln\big(\frac{[\text{FimE}]_1}{[\text{FimE}]_2}\big)} = \frac{ln\left(\frac{ ln\big(\frac{[\text{OFF}]_0-[\text{OFF}]_{\infty_1}}{[\text{OFF}]_1-[\text{OFF}]_{\infty_1}}\big)\frac{[\text{OFF}]_{\infty_1}}{t_1} }{ ln\big(\frac{[\text{OFF}]_0-[\text{OFF}]_{\infty_2}}{[\text{OFF}]_2-[\text{OFF}]_{\infty_2}}\big)\frac{[\text{OFF}]_{\infty_2}}{t_2} }\right)}{ln\big(\frac{[\text{FimE}]_1}{[\text{FimE}]_2}\big)} | n=\frac{ln\left(\frac{ ln\big(\frac{[\text{ON}]_0-[\text{ON}]_{\infty_1}}{[\text{ON}]_1-[\text{ON}]_{\infty_1}}\big)\frac{1-[\text{ON}]_{\infty_1}}{t_1} }{ ln\big(\frac{[\text{ON}]_0-[\text{ON}]_{\infty_2}}{[\text{ON}]_2-[\text{ON}]_{\infty_2}}\big)\frac{1-[\text{ON}]_{\infty_2}}{t_2} }\right)}{ln\big(\frac{[\text{FimE}]_1}{[\text{FimE}]_2}\big)} = \frac{ln\left(\frac{ ln\big(\frac{[\text{OFF}]_0-[\text{OFF}]_{\infty_1}}{[\text{OFF}]_1-[\text{OFF}]_{\infty_1}}\big)\frac{[\text{OFF}]_{\infty_1}}{t_1} }{ ln\big(\frac{[\text{OFF}]_0-[\text{OFF}]_{\infty_2}}{[\text{OFF}]_2-[\text{OFF}]_{\infty_2}}\big)\frac{[\text{OFF}]_{\infty_2}}{t_2} }\right)}{ln\big(\frac{[\text{FimE}]_1}{[\text{FimE}]_2}\big)} | ||
\end{equation*} | \end{equation*} | ||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
+ | \begin{equation*} | ||
+ | k_{H} = \frac{1}{2}ln\big(\frac{[\text{ON}]_0-[\text{ON}]_{\infty_1}}{[\text{ON}]_1-[\text{ON}]_{\infty_1}}\big)\frac{[\text{ON}]_{\infty_1}}{t_1}[\text{Hbif}]_1^{\frac{ln\left(\frac{ ln\big(\frac{[\text{ON}]_0-[\text{ON}]_{\infty_1}}{[\text{ON}]_1-[\text{ON}]_{\infty_1}}\big)\frac{[\text{ON}]_{\infty_1}}{t_1} }{ ln\big(\frac{[\text{ON}]_0-[\text{ON}]_{\infty_2}}{[\text{ON}]_2-[\text{ON}]_{\infty_2}}\big)\frac{[\text{ON}]_{\infty_2}}{t_2} }\right)}{ln(\frac{[\text{Hbif}]_1}{[\text{Hbif}]_2})}} + \frac{1}{2}ln(\frac{[\text{ON}]_0-[\text{ON}]_{\infty_2}}{[\text{ON}]_2-[\text{ON}]_{\infty_2}})\frac{[\text{ON}]_{\infty_2}}{t_2}[\text{Hbif}]_2^{\frac{ln\left(\frac{ ln\big(\frac{[\text{ON}]_0-[\text{ON}]_{\infty_1}}{[\text{ON}]_1-[\text{ON}]_{\infty_1}}\big)\frac{[\text{ON}]_{\infty_1}}{t_1} }{ ln\big(\frac{[\text{ON}]_0-[\text{ON}]_{\infty_2}}{[\text{ON}]_2-[\text{ON}]_{\infty_2}}\big)\frac{[\text{ON}]_{\infty_2}}{t_2} }\right)}{ln(\frac{[\text{Hbif}]_1}{[\text{Hbif}]_2})}} | ||
+ | \end{equation*} | ||
+ | |||
+ | \begin{equation*} | ||
+ | k_{H} = \frac{1}{2}ln(\frac{[\text{OFF}]_0-[\text{OFF}]_{\infty_1}}{[\text{OFF}]_1-[\text{OFF}]_{\infty_1}})\frac{1-[\text{OFF}]_{\infty_1}}{t_1}[\text{Hbif}]_1^{\frac{ln\left(\frac{ ln\big(\frac{[\text{OFF}]_0-[\text{OFF}]_{\infty_1}}{[\text{OFF}]_1-[\text{OFF}]_{\infty_1}}\big)\frac{1-[\text{OFF}]_{\infty_1}}{t_1} }{ ln\big(\frac{[\text{OFF}]_0-[\text{OFF}]_{\infty_2}}{[\text{OFF}]_2-[\text{OFF}]_{\infty_2}}\big)\frac{1-[\text{OFF}]_{\infty_2}}{t_2} }\right)}{ln(\frac{[\text{Hbif}]_1}{[\text{Hbif}]_2})}} + \frac{1}{2}ln(\frac{[\text{OFF}]_0-[\text{OFF}]_{\infty_2}}{[\text{OFF}]_2-[\text{OFF}]_{\infty_2}})\frac{1-[\text{OFF}]_{\infty_2}}{t_2}[\text{Hbif}]_2^{\frac{ln\left(\frac{ ln\big(\frac{[\text{OFF}]_0-[\text{OFF}]_{\infty_1}}{[\text{OFF}]_1-[\text{OFF}]_{\infty_1}}\big)\frac{1-[\text{OFF}]_{\infty_1}}{t_1} }{ ln\big(\frac{[\text{OFF}]_0-[\text{OFF}]_{\infty_2}}{[\text{OFF}]_2-[\text{OFF}]_{\infty_2}}\big)\frac{1-[\text{OFF}]_{\infty_2}}{t_2} }\right)}{ln(\frac{[\text{Hbif}]_1}{[\text{Hbif}]_2})}} | ||
+ | \end{equation} | ||
\begin{equation*} | \begin{equation*} | ||
k_{F} = \frac{1}{2}ln(\frac{[\text{ON}]_0-[\text{ON}]_{\infty_1}}{[\text{ON}]_1-[\text{ON}]_{\infty_1}})\frac{1-[\text{ON}]_{\infty_1}}{t_1}[\text{FimE}]_1^{\frac{ln\left(\frac{ ln\big(\frac{[\text{ON}]_0-[\text{ON}]_{\infty_1}}{[\text{ON}]_1-[\text{ON}]_{\infty_1}}\big)\frac{1-[\text{ON}]_{\infty_1}}{t_1} }{ ln\big(\frac{[\text{ON}]_0-[\text{ON}]_{\infty_2}}{[\text{ON}]_2-[\text{ON}]_{\infty_2}}\big)\frac{1-[\text{ON}]_{\infty_2}}{t_2} }\right)}{ln(\frac{[\text{FimE}]_1}{[\text{FimE}]_2})}} + \frac{1}{2}ln(\frac{[\text{ON}]_0-[\text{ON}]_{\infty_2}}{[\text{ON}]_2-[\text{ON}]_{\infty_2}})\frac{1-[\text{ON}]_{\infty_2}}{t_2}[\text{FimE}]_2^{\frac{ln\left(\frac{ ln\big(\frac{[\text{ON}]_0-[\text{ON}]_{\infty_1}}{[\text{ON}]_1-[\text{ON}]_{\infty_1}}\big)\frac{1-[\text{ON}]_{\infty_1}}{t_1} }{ ln\big(\frac{[\text{ON}]_0-[\text{ON}]_{\infty_2}}{[\text{ON}]_2-[\text{ON}]_{\infty_2}}\big)\frac{1-[\text{ON}]_{\infty_2}}{t_2} }\right)}{ln(\frac{[\text{FimE}]_1}{[\text{FimE}]_2})}} | k_{F} = \frac{1}{2}ln(\frac{[\text{ON}]_0-[\text{ON}]_{\infty_1}}{[\text{ON}]_1-[\text{ON}]_{\infty_1}})\frac{1-[\text{ON}]_{\infty_1}}{t_1}[\text{FimE}]_1^{\frac{ln\left(\frac{ ln\big(\frac{[\text{ON}]_0-[\text{ON}]_{\infty_1}}{[\text{ON}]_1-[\text{ON}]_{\infty_1}}\big)\frac{1-[\text{ON}]_{\infty_1}}{t_1} }{ ln\big(\frac{[\text{ON}]_0-[\text{ON}]_{\infty_2}}{[\text{ON}]_2-[\text{ON}]_{\infty_2}}\big)\frac{1-[\text{ON}]_{\infty_2}}{t_2} }\right)}{ln(\frac{[\text{FimE}]_1}{[\text{FimE}]_2})}} + \frac{1}{2}ln(\frac{[\text{ON}]_0-[\text{ON}]_{\infty_2}}{[\text{ON}]_2-[\text{ON}]_{\infty_2}})\frac{1-[\text{ON}]_{\infty_2}}{t_2}[\text{FimE}]_2^{\frac{ln\left(\frac{ ln\big(\frac{[\text{ON}]_0-[\text{ON}]_{\infty_1}}{[\text{ON}]_1-[\text{ON}]_{\infty_1}}\big)\frac{1-[\text{ON}]_{\infty_1}}{t_1} }{ ln\big(\frac{[\text{ON}]_0-[\text{ON}]_{\infty_2}}{[\text{ON}]_2-[\text{ON}]_{\infty_2}}\big)\frac{1-[\text{ON}]_{\infty_2}}{t_2} }\right)}{ln(\frac{[\text{FimE}]_1}{[\text{FimE}]_2})}} | ||
\end{equation*} | \end{equation*} | ||
+ | |||
\begin{equation*} | \begin{equation*} | ||
k_{F} = \frac{1}{2}ln(\frac{[\text{OFF}]_0-[\text{OFF}]_{\infty_1}}{[\text{OFF}]_1-[\text{OFF}]_{\infty_1}})\frac{[\text{OFF}]_{\infty_1}}{t_1}[\text{FimE}]_1^{\frac{ln\left(\frac{ ln\big(\frac{[\text{OFF}]_0-[\text{OFF}]_{\infty_1}}{[\text{OFF}]_1-[\text{OFF}]_{\infty_1}}\big)\frac{[\text{OFF}]_{\infty_1}}{t_1} }{ ln\big(\frac{[\text{OFF}]_0-[\text{OFF}]_{\infty_2}}{[\text{OFF}]_2-[\text{OFF}]_{\infty_2}}\big)\frac{[\text{OFF}]_{\infty_2}}{t_2} }\right)}{ln(\frac{[\text{FimE}]_1}{[\text{FimE}]_2})}} + \frac{1}{2}ln(\frac{[\text{OFF}]_0-[\text{OFF}]_{\infty_2}}{[\text{OFF}]_2-[\text{OFF}]_{\infty_2}})\frac{[\text{OFF}]_{\infty_2}}{t_2}[\text{FimE}]_2^{\frac{ln\left(\frac{ ln\big(\frac{[\text{OFF}]_0-[\text{OFF}]_{\infty_1}}{[\text{OFF}]_1-[\text{OFF}]_{\infty_1}}\big)\frac{[\text{OFF}]_{\infty_1}}{t_1} }{ ln\big(\frac{[\text{OFF}]_0-[\text{OFF}]_{\infty_2}}{[\text{OFF}]_2-[\text{OFF}]_{\infty_2}}\big)\frac{[\text{OFF}]_{\infty_2}}{t_2} }\right)}{ln(\frac{[\text{FimE}]_1}{[\text{FimE}]_2})}} | k_{F} = \frac{1}{2}ln(\frac{[\text{OFF}]_0-[\text{OFF}]_{\infty_1}}{[\text{OFF}]_1-[\text{OFF}]_{\infty_1}})\frac{[\text{OFF}]_{\infty_1}}{t_1}[\text{FimE}]_1^{\frac{ln\left(\frac{ ln\big(\frac{[\text{OFF}]_0-[\text{OFF}]_{\infty_1}}{[\text{OFF}]_1-[\text{OFF}]_{\infty_1}}\big)\frac{[\text{OFF}]_{\infty_1}}{t_1} }{ ln\big(\frac{[\text{OFF}]_0-[\text{OFF}]_{\infty_2}}{[\text{OFF}]_2-[\text{OFF}]_{\infty_2}}\big)\frac{[\text{OFF}]_{\infty_2}}{t_2} }\right)}{ln(\frac{[\text{FimE}]_1}{[\text{FimE}]_2})}} + \frac{1}{2}ln(\frac{[\text{OFF}]_0-[\text{OFF}]_{\infty_2}}{[\text{OFF}]_2-[\text{OFF}]_{\infty_2}})\frac{[\text{OFF}]_{\infty_2}}{t_2}[\text{FimE}]_2^{\frac{ln\left(\frac{ ln\big(\frac{[\text{OFF}]_0-[\text{OFF}]_{\infty_1}}{[\text{OFF}]_1-[\text{OFF}]_{\infty_1}}\big)\frac{[\text{OFF}]_{\infty_1}}{t_1} }{ ln\big(\frac{[\text{OFF}]_0-[\text{OFF}]_{\infty_2}}{[\text{OFF}]_2-[\text{OFF}]_{\infty_2}}\big)\frac{[\text{OFF}]_{\infty_2}}{t_2} }\right)}{ln(\frac{[\text{FimE}]_1}{[\text{FimE}]_2})}} | ||
\end{equation*} | \end{equation*} |
Revision as of 22:09, 6 September 2013
system:
\begin{equation*}
[\text{ON}]'=k_\text{H}[\text{Hbif}]^m[\text{OFF}]-k_\text{F}[\text{FimE}]^n[\text{ON}]
\end{equation*}
\begin{equation*} [\text{OFF}]'=k_\text{F}[\text{FimE}]^n[\text{ON}]-k_\text{H}[\text{Hbif}]^m[\text{OFF}] \end{equation*}
\begin{equation*} [\text{FimE}]'=0 \end{equation*}
\begin{equation*} [\text{Hbif}]'=0 \end{equation*}
conservation equation: \begin{equation*} [\text{ON}]+[\text{OFF}]=1 \end{equation*}
reduced model: \begin{equation*} [\text{ON}]'=k_\text{H}[\text{Hbif}]^m-(k_\text{H}[\text{Hbif}]^m+k_\text{F}[\text{FimE}]^n)[\text{ON}] \end{equation*}
\begin{equation*} [\text{FimE}]'=0 \end{equation*}
\begin{equation*} [\text{Hbif}]'=0 \end{equation*}
steady state: \\ if $k_\text{H}[\text{Hbif}]^m+k_\text{F}[\text{FimE}]^n \neq 0$,
\begin{equation*} [\text{ON}]_\infty=\frac{k_\text{H}[\text{Hbif}]^m}{k_\text{H}[\text{Hbif}]^m+k_\text{F}[\text{FimE}]^n} \end{equation*}
\begin{equation*} [\text{OFF}]_\infty=\frac{k_\text{F}[\text{FimE}]^n}{k_\text{H}[\text{Hbif}]^m+k_\text{F}[\text{FimE}]^n} \end{equation*}
if $k_\text{H}[\text{Hbif}]^m=k_\text{F}[\text{FimE}]^n=0$, \begin{equation*} [\text{ON}]_\infty=[\text{ON}]_0 \end{equation*}
\begin{equation*} [\text{OFF}]_\infty=1-[\text{ON}]_\infty=1-[\text{ON}]_0=[\text{OFF}]_0 \end{equation*}
calibration: \begin{equation*} m=\frac{ln\left(\frac{ ln\big(\frac{[\text{ON}]_0-[\text{ON}]_{\infty_1}}{[\text{ON}]_1-[\text{ON}]_{\infty_1}}\big)\frac{[\text{ON}]_{\infty_1}}{t_1} }{ ln\big(\frac{[\text{ON}]_0-[\text{ON}]_{\infty_2}}{[\text{ON}]_2-[\text{ON}]_{\infty_2}}\big)\frac{[\text{ON}]_{\infty_2}}{t_2} }\right)}{ln\big(\frac{[\text{Hbif}]_1}{[\text{Hbif}]_2}\big)} = \frac{ln\left(\frac{ ln\big(\frac{[\text{OFF}]_0-[\text{OFF}]_{\infty_1}}{[\text{OFF}]_1-[\text{OFF}]_{\infty_1}}\big)\frac{1-[\text{OFF}]_{\infty_1}}{t_1} }{ ln\big(\frac{[\text{OFF}]_0-[\text{OFF}]_{\infty_2}}{[\text{OFF}]_2-[\text{OFF}]_{\infty_2}}\big)\frac{1-[\text{OFF}]_{\infty_2}}{t_2} }\right)}{ln\big(\frac{[\text{Hbif}]_1}{[\text{Hbif}]_2}\big)} \end{equation*}
\begin{equation*} n=\frac{ln\left(\frac{ ln\big(\frac{[\text{ON}]_0-[\text{ON}]_{\infty_1}}{[\text{ON}]_1-[\text{ON}]_{\infty_1}}\big)\frac{1-[\text{ON}]_{\infty_1}}{t_1} }{ ln\big(\frac{[\text{ON}]_0-[\text{ON}]_{\infty_2}}{[\text{ON}]_2-[\text{ON}]_{\infty_2}}\big)\frac{1-[\text{ON}]_{\infty_2}}{t_2} }\right)}{ln\big(\frac{[\text{FimE}]_1}{[\text{FimE}]_2}\big)} = \frac{ln\left(\frac{ ln\big(\frac{[\text{OFF}]_0-[\text{OFF}]_{\infty_1}}{[\text{OFF}]_1-[\text{OFF}]_{\infty_1}}\big)\frac{[\text{OFF}]_{\infty_1}}{t_1} }{ ln\big(\frac{[\text{OFF}]_0-[\text{OFF}]_{\infty_2}}{[\text{OFF}]_2-[\text{OFF}]_{\infty_2}}\big)\frac{[\text{OFF}]_{\infty_2}}{t_2} }\right)}{ln\big(\frac{[\text{FimE}]_1}{[\text{FimE}]_2}\big)} \end{equation*}
\begin{equation*} k_{H} = \frac{1}{2}ln\big(\frac{[\text{ON}]_0-[\text{ON}]_{\infty_1}}{[\text{ON}]_1-[\text{ON}]_{\infty_1}}\big)\frac{[\text{ON}]_{\infty_1}}{t_1}[\text{Hbif}]_1^{\frac{ln\left(\frac{ ln\big(\frac{[\text{ON}]_0-[\text{ON}]_{\infty_1}}{[\text{ON}]_1-[\text{ON}]_{\infty_1}}\big)\frac{[\text{ON}]_{\infty_1}}{t_1} }{ ln\big(\frac{[\text{ON}]_0-[\text{ON}]_{\infty_2}}{[\text{ON}]_2-[\text{ON}]_{\infty_2}}\big)\frac{[\text{ON}]_{\infty_2}}{t_2} }\right)}{ln(\frac{[\text{Hbif}]_1}{[\text{Hbif}]_2})}} + \frac{1}{2}ln(\frac{[\text{ON}]_0-[\text{ON}]_{\infty_2}}{[\text{ON}]_2-[\text{ON}]_{\infty_2}})\frac{[\text{ON}]_{\infty_2}}{t_2}[\text{Hbif}]_2^{\frac{ln\left(\frac{ ln\big(\frac{[\text{ON}]_0-[\text{ON}]_{\infty_1}}{[\text{ON}]_1-[\text{ON}]_{\infty_1}}\big)\frac{[\text{ON}]_{\infty_1}}{t_1} }{ ln\big(\frac{[\text{ON}]_0-[\text{ON}]_{\infty_2}}{[\text{ON}]_2-[\text{ON}]_{\infty_2}}\big)\frac{[\text{ON}]_{\infty_2}}{t_2} }\right)}{ln(\frac{[\text{Hbif}]_1}{[\text{Hbif}]_2})}} \end{equation*}
\begin{equation*} k_{H} = \frac{1}{2}ln(\frac{[\text{OFF}]_0-[\text{OFF}]_{\infty_1}}{[\text{OFF}]_1-[\text{OFF}]_{\infty_1}})\frac{1-[\text{OFF}]_{\infty_1}}{t_1}[\text{Hbif}]_1^{\frac{ln\left(\frac{ ln\big(\frac{[\text{OFF}]_0-[\text{OFF}]_{\infty_1}}{[\text{OFF}]_1-[\text{OFF}]_{\infty_1}}\big)\frac{1-[\text{OFF}]_{\infty_1}}{t_1} }{ ln\big(\frac{[\text{OFF}]_0-[\text{OFF}]_{\infty_2}}{[\text{OFF}]_2-[\text{OFF}]_{\infty_2}}\big)\frac{1-[\text{OFF}]_{\infty_2}}{t_2} }\right)}{ln(\frac{[\text{Hbif}]_1}{[\text{Hbif}]_2})}} + \frac{1}{2}ln(\frac{[\text{OFF}]_0-[\text{OFF}]_{\infty_2}}{[\text{OFF}]_2-[\text{OFF}]_{\infty_2}})\frac{1-[\text{OFF}]_{\infty_2}}{t_2}[\text{Hbif}]_2^{\frac{ln\left(\frac{ ln\big(\frac{[\text{OFF}]_0-[\text{OFF}]_{\infty_1}}{[\text{OFF}]_1-[\text{OFF}]_{\infty_1}}\big)\frac{1-[\text{OFF}]_{\infty_1}}{t_1} }{ ln\big(\frac{[\text{OFF}]_0-[\text{OFF}]_{\infty_2}}{[\text{OFF}]_2-[\text{OFF}]_{\infty_2}}\big)\frac{1-[\text{OFF}]_{\infty_2}}{t_2} }\right)}{ln(\frac{[\text{Hbif}]_1}{[\text{Hbif}]_2})}} \end{equation}
\begin{equation*} k_{F} = \frac{1}{2}ln(\frac{[\text{ON}]_0-[\text{ON}]_{\infty_1}}{[\text{ON}]_1-[\text{ON}]_{\infty_1}})\frac{1-[\text{ON}]_{\infty_1}}{t_1}[\text{FimE}]_1^{\frac{ln\left(\frac{ ln\big(\frac{[\text{ON}]_0-[\text{ON}]_{\infty_1}}{[\text{ON}]_1-[\text{ON}]_{\infty_1}}\big)\frac{1-[\text{ON}]_{\infty_1}}{t_1} }{ ln\big(\frac{[\text{ON}]_0-[\text{ON}]_{\infty_2}}{[\text{ON}]_2-[\text{ON}]_{\infty_2}}\big)\frac{1-[\text{ON}]_{\infty_2}}{t_2} }\right)}{ln(\frac{[\text{FimE}]_1}{[\text{FimE}]_2})}} + \frac{1}{2}ln(\frac{[\text{ON}]_0-[\text{ON}]_{\infty_2}}{[\text{ON}]_2-[\text{ON}]_{\infty_2}})\frac{1-[\text{ON}]_{\infty_2}}{t_2}[\text{FimE}]_2^{\frac{ln\left(\frac{ ln\big(\frac{[\text{ON}]_0-[\text{ON}]_{\infty_1}}{[\text{ON}]_1-[\text{ON}]_{\infty_1}}\big)\frac{1-[\text{ON}]_{\infty_1}}{t_1} }{ ln\big(\frac{[\text{ON}]_0-[\text{ON}]_{\infty_2}}{[\text{ON}]_2-[\text{ON}]_{\infty_2}}\big)\frac{1-[\text{ON}]_{\infty_2}}{t_2} }\right)}{ln(\frac{[\text{FimE}]_1}{[\text{FimE}]_2})}} \end{equation*}
\begin{equation*} k_{F} = \frac{1}{2}ln(\frac{[\text{OFF}]_0-[\text{OFF}]_{\infty_1}}{[\text{OFF}]_1-[\text{OFF}]_{\infty_1}})\frac{[\text{OFF}]_{\infty_1}}{t_1}[\text{FimE}]_1^{\frac{ln\left(\frac{ ln\big(\frac{[\text{OFF}]_0-[\text{OFF}]_{\infty_1}}{[\text{OFF}]_1-[\text{OFF}]_{\infty_1}}\big)\frac{[\text{OFF}]_{\infty_1}}{t_1} }{ ln\big(\frac{[\text{OFF}]_0-[\text{OFF}]_{\infty_2}}{[\text{OFF}]_2-[\text{OFF}]_{\infty_2}}\big)\frac{[\text{OFF}]_{\infty_2}}{t_2} }\right)}{ln(\frac{[\text{FimE}]_1}{[\text{FimE}]_2})}} + \frac{1}{2}ln(\frac{[\text{OFF}]_0-[\text{OFF}]_{\infty_2}}{[\text{OFF}]_2-[\text{OFF}]_{\infty_2}})\frac{[\text{OFF}]_{\infty_2}}{t_2}[\text{FimE}]_2^{\frac{ln\left(\frac{ ln\big(\frac{[\text{OFF}]_0-[\text{OFF}]_{\infty_1}}{[\text{OFF}]_1-[\text{OFF}]_{\infty_1}}\big)\frac{[\text{OFF}]_{\infty_1}}{t_1} }{ ln\big(\frac{[\text{OFF}]_0-[\text{OFF}]_{\infty_2}}{[\text{OFF}]_2-[\text{OFF}]_{\infty_2}}\big)\frac{[\text{OFF}]_{\infty_2}}{t_2} }\right)}{ln(\frac{[\text{FimE}]_1}{[\text{FimE}]_2})}} \end{equation*}