Team:USP-Brazil/Applications
From 2013.igem.org
Andresochoa (Talk | contribs) |
|||
Line 43: | Line 43: | ||
<source src="https://static.igem.org/mediawiki/2013/f/ff/Secuencia1.webm" type="video/webm"> | <source src="https://static.igem.org/mediawiki/2013/f/ff/Secuencia1.webm" type="video/webm"> | ||
<source src="https://static.igem.org/mediawiki/2013/2/2d/USPBr_Device1.mp4" type="video/mp4"> | <source src="https://static.igem.org/mediawiki/2013/2/2d/USPBr_Device1.mp4" type="video/mp4"> | ||
- | </video><br /><b>Video 1:</b> How to use the device | + | </video><br /><b>Video 1:</b> How to use the device: Step 1. Open the low part of the device for collecting the sample and immerse it into the drink; Step 2. Close the sampler. The teeth in the sampler will break the protection layer that keeps the GMOs isolated; Step 3. Turn up the device for visualization through the window made of a translucent material; Step 4. If your sample gets read it means that your drink has more than 2% methanol in it (level accepted for human consumption); Step 5. Activate the chlorine dispenser. It will break two isolation layers, this will put the chlorine in contact with the GMOs-sample mixture, for the microorganism inactivation. |
+ | |||
</p> | </p> | ||
Revision as of 22:41, 26 September 2013
Template:Https://2013.igem.org/Team:USP-Brazil/templateUP
The device
How to design GMOs/GMOs related products?
The design is evolving toward the use of new materials, as the GMOs (Genetic modified organism). It is also learning about the necessities, constrains and possibilities that these materials offer. This year we had the possibility of design/create a container for our biosensor project. This has a user-friendly purpose and a biosafety purpose. You can read more about biosafety in our Biosafety page.
In order to create our container we needed to established the necessities that it should responds to:
- Be portable.
- Helping to collect the sample.
- Prevent contamination of the sample.
- Contain a GMOs.
We needed also to stablished the moments/steps of the user experience:
- Taking the sample.
- Put in contact the GMOs with the sample, preventing GMOs releasing.
- Visualize the sample.
- Inactivation of the GMOs for proper disposal.
After stablished these parameters, we began our creative process, thinking about the best way to respond to all theses constrains. We found that our best choice, because its simplicity and capacity to respond to our/client necessities was a pen-like structure. Knowing this, we developed several design possibilities having this structure in mind.
Figure 1: Designing sketches done at the experimental design phase.
1. Mechanism design; 2. Sampling design; 3. Use proposal.
Developing the device/container
In order to develop a prototype for testing our pen-like structure and its interaction with the consumer, we needed to actually built it. We found that 3D printer could be a great way to materialize our device prototype. This will allow us to develop the testing phase of our design. The currently 3D printer state of art give you a lot of possibilities for doing tasks like this, but it also imposes some constrains, for example, there is not flexible material for 3D printer available neither transparent material. Our first prototype was developed for being printed in a 3D printer, considering the currently limitations of this technology.
Video 1: How to use the device: Step 1. Open the low part of the device for collecting the sample and immerse it into the drink; Step 2. Close the sampler. The teeth in the sampler will break the protection layer that keeps the GMOs isolated; Step 3. Turn up the device for visualization through the window made of a translucent material; Step 4. If your sample gets read it means that your drink has more than 2% methanol in it (level accepted for human consumption); Step 5. Activate the chlorine dispenser. It will break two isolation layers, this will put the chlorine in contact with the GMOs-sample mixture, for the microorganism inactivation.
Video 2: How the device works
Video 3: Device parts
Prospective design
Going further in our design exploration, considering another production possibilities besides the 3D printer, we developed a second product, which was not constrained by the 3D printer limitations. This new product incorporated more advantages: was projected to be made of elastic transparent plastic, making it easier to use and visualize the result; it was also meant to be made by eco-friendly plastic, which means that it will be made using biodegradable plastic, this wont cause a biosafety issue because the device kept the dispositive to inactivate the GMOs after use.
Video 4: Prospective design
Template:Https://2013.igem.org/Team:USP-Brazil/templateDOWN