Team:Exeter/Project

From 2013.igem.org

(Difference between revisions)
(Overall project)
(Cleared alert box, moved navgiation to the bottom, hidden template)
Line 1: Line 1:
-
<!-- *** What falls between these lines is the Alert Box!  You can remove it from your pages once you have read and understood the alert *** -->
 
-
 
-
<html>
 
-
<div id="box" style="width: 700px; margin-left: 137px; padding: 5px; border: 3px solid #000; background-color: #fe2b33;">
 
-
<div id="template" style="text-align: center; font-weight: bold; font-size: large; color: #f6f6f6; padding: 5px;">
 
-
This is a template page. READ THESE INSTRUCTIONS.
 
-
</div>
 
-
<div id="instructions" style="text-align: center; font-weight: normal; font-size: small; color: #f6f6f6; padding: 5px;">
 
-
You are provided with this team page template with which to start the iGEM season.  You may choose to personalize it to fit your team but keep the same "look." Or you may choose to take your team wiki to a different level and design your own wiki.  You can find some examples <a href="https://2008.igem.org/Help:Template/Examples">HERE</a>.
 
-
</div>
 
-
<div id="warning" style="text-align: center; font-weight: bold; font-size: small; color: #f6f6f6; padding: 5px;">
 
-
You <strong>MUST</strong> have all of the pages listed in the menu below with the names specified.  PLEASE keep all of your pages within your teams namespace. 
 
-
</div>
 
-
</div>
 
-
</html>
 
-
 
-
<!-- *** End of the alert box *** -->
 
-
 
-
 
-
{| style="color:#1b2c8a;background-color:#0c6;" cellpadding="3" cellspacing="1" border="1" bordercolor="#fff" width="62%" align="center"
 
-
!align="center"|[[Team:Exeter|Home]]
 
-
!align="center"|[[Team:Exeter/Team|Team]]
 
-
!align="center"|[https://igem.org/Team.cgi?year=2013&team_name=Exeter Official Team Profile]
 
-
!align="center"|[[Team:Exeter/Project|Project]]
 
-
!align="center"|[[Team:Exeter/Parts|Parts Submitted to the Registry]]
 
-
!align="center"|[[Team:Exeter/Modeling|Modeling]]
 
-
!align="center"|[[Team:Exeter/Notebook|Notebook]]
 
-
!align="center"|[[Team:Exeter/Safety|Safety]]
 
-
!align="center"|[[Team:Exeter/Attributions|Attributions]]
 
-
|}
 
-
 
-
 
-
 
-
 
== '''Overall project''' ==
== '''Overall project''' ==
Line 48: Line 14:
The project can be followed on a [http://exeterigem.tumblr.com/ blog] created by the team.
The project can be followed on a [http://exeterigem.tumblr.com/ blog] created by the team.
 +
 +
<!--  This tag makes the text inside hidden, going to put stuff in here for development, remove the tag once you've completed the inside
 +
== Project Details==
== Project Details==
Line 70: Line 39:
== Results ==
== Results ==
 +
 +
-->

Revision as of 11:02, 2 July 2013

Overall project

Our overarching aim is to further improve upon an area that many past iGEM teams have studied; using multi-wavelength light stimulus to generate variable outputs. We are especially inspired by Uppsala’s 2011 project, and the “Hello World” bio-film from UT Austin in 2004. Additionally we aim to produce a standardized brick to be twinned through a series of NOT gates with the available well characterized light input machinery, enabling implementation of any trio of outputs. Acute control over each output should be possible by varying wavelength input. To show this off we hope to use CMY colour wheel as our output (as opposed to the previously studied RBY), to produce a bio-photograph. We also hope to use non-fluorescing proteins as our pigments, as we want a picture that simply develops, visualisable without any further stimulation/excitation.

Although this has been a subject many teams have grappled with in the past (with differing degrees of success), we are confident that we can add to the mass of data and introduce new BioBricks related to light-sensing and output in the iGEM database, and hopefully go several steps further towards making full-colour photographs using bacteria.

Considering modelling, we hope to analyse the absorption spectrum of each pigment, both alone and in combination. Visualisation of light sensitivity throughout the system will enable calibration of the light input ensuring a reliable and sensical output. Further to this other teams reported their light sensing systems working better at temperatures <37 degrees, which we will also investigate.

As a sideline, we’re also going to test a new way of preserving and presenting bacterial culture using pouring plastics. Unfortunately, this would kill the bacteria, but should give academics a new way to physically present colonies and cultures they have been working on. For us, it will allow a way of easily transporting our “photographs” without unwieldy plates and gels.

As mentioned we will be using additive and subtractive colour combinations to allow synthesis of the correct pigment output, corresponding to which colours of light they are exposed to. For example the NOT gated input of red light represses synthesis of cyan pigment enabling an output of yellow and magenta pigment.

Ensuring reliable activity across NOT gates in our pathways is key in our project. For the blue and red light sensors, the presence of their corresponding wavelength of light causes autophosphorylation of an intermediate protein. Phosphorylated intermediates then freely bind as repressors to the corresponding output gene (cyan for red light, yellow for blue light). With the green light sensor, a signal inverter will be introduced, as the FixJ system acts as an activator not a repressor (the exact opposite of what we want). Instead of acting on the gene coding for the output (magenta) the phosphorylated intermediate binds instead to a gene coding for the cI protein used in the lambda phage (a bacteriophage which infects E. coli). Once synthesised the cl protein acts as the output (magenta) repressor.

The project can be followed on a [http://exeterigem.tumblr.com/ blog] created by the team.