Team:MIT/rtTA3

From 2013.igem.org

(Difference between revisions)
Line 16: Line 16:
<h1>Overview</h1>
<h1>Overview</h1>
<p>
<p>
-
The highly oligomeric cytoplasmic protein TyA with the N-terminal acylation tag (MGCINSKRKD-) has been shown to be targeted to exosomal budding sites on the plasma membrane and to be sorted into exosomes.  When eGFP is added to the fusion of the acylation tag and TyA (Acyl-TyA), the packaging effect was visually observed under microscope. The Acyl-TyA protein is used to transport the desired  reverse tetracycline-controlled transactivator (rtTA) to receiver cells through exosomes.
+
The highly oligomeric cytoplasmic protein TyA with the N-terminal acylation tag (MGCINSKRKD-) has been shown to be targeted to exosomal budding sites on the plasma membrane and to be sorted into exosomes.  When eGFP is added to the fusion of the acylation tag and TyA (Acyl-TyA), the packaging effect was observed under a microscope. The Acyl-TyA protein is used to transport the desired  reverse tetracycline-controlled transactivator (rtTA) to receiver cells through exosomes.
</p>
</p>
<p>
<p>
-
To test the function of rtTA in single cells, a constitutive expression of rtTA is driven by the human elongation factor 1a (hEF1a) promoter. An inducible expression of enhanced blue fluorescent protein (eBFP) is obtained when the eBFP is fused with tetracycline response element (Tre) promoter. Jurkat T cells were nucleofected with both plasmids and incubated with doxycycline (Dox) concentration?. The blue fluorescence was observed 48 hours post nucleofection.
+
To test the function of rtTA in single cells, a constitutive expression of rtTA is driven by the human elongation factor 1a (hEF1a) promoter. An inducible expression of enhanced blue fluorescent protein (eBFP) is obtained when the eBFP is fused with tetracycline response element (Tre) promoter. Jurkat T cells were nucleofected with both plasmids and incubated with doxycycline (Dox) concentration. The blue fluorescence was observed 48 hours post nucleofection.
</p>
</p>
<p>
<p>
-
To test the plasma membrane localization effect of Acyl-TyA on rtTA, rtTA is added to the Acyl-TyA sequence with 3 glysines as a linker in between. Both rtTA and Acyl-TyA-rtTA are constitutively expressed. The inducible fluorescence of eBFP as described above was measured by fluorescence activated cell sorter (FACS) machine. The cell count of blue florescence when only rtTA was present was significantly higher than the one when rtTA was fused with Acyl-TyA, which suggested the amount of Acyl-TyA-rtTA present in the cytoplasm was lower than the amount of rtTA. To further test the exportation of Acyl-TyA-rtTA into exosomes, a histin tag is added to the C terminus. After extracted and purified, exosomes secreted from cells that express Acyl-TyA-rtTA were western blotted against anti-his antibody. Do we have result for this? I remembered someone told me the anti his antibody might be defective.
+
To test the plasma membrane localization effect of Acyl-TyA on rtTA, rtTA is added to the Acyl-TyA sequence with 3 glysines as a linker in between. Both rtTA and Acyl-TyA-rtTA are constitutively expressed. The inducible fluorescence of eBFP as described above was measured by fluorescence activated cell sorter (FACS) machine. The cell count of blue florescence when only rtTA was present was significantly higher than the one when rtTA was fused with Acyl-TyA, which suggested the amount of Acyl-TyA-rtTA present in the cytoplasm was lower than the amount of rtTA. To further test the exportation of Acyl-TyA-rtTA into exosomes, a histine tag was added to the C terminus.
<br><br>
<br><br>
Line 36: Line 36:
<img src="https://static.igem.org/mediawiki/2013/e/ed/RtTAsinglcell.png" width="200" height="300">
<img src="https://static.igem.org/mediawiki/2013/e/ed/RtTAsinglcell.png" width="200" height="300">
</div>
</div>
-
<p>Once we determined that rtTA was functional, we checked the functionality of the Acyl-TyA-rtTA fusion protein, using mKate for the output and eBFP for the transfection marker once again. We found that the fusion rtTA still worked in the presence of doxycycline, showing that we could use it in other fusion constructs.
+
<p>Once we determined that rtTA was functional, we checked the functionality of the Acyl-TyA-rtTA fusion protein. There were concerns that the oligemerization effects of TyA would interfere with the activity of rtTA. We transfected the new Acyl-TyA-rtTA construct into HEK-293 cells, using mKate for the output and eBFP for the transfection marker like in the previous experiment. We found that the fusion rtTA still worked in the presence of doxycycline.
</p>
</p>
<br><br>
<br><br>
Line 43: Line 43:
</div>
</div>
<br><br>
<br><br>
-
<p>As previously stated, both rtTA and Acyl-TyA-rtTA worked as we had hoped. The fusion protein had somewhat reduced effectiveness, most likely due to hindrance from the bulky Acyl-TyA sections; however, its activity was sufficient for our purposes.</p>
+
<p>As previously stated, both rtTA and Acyl-TyA-rtTA worked as we had hoped. The fusion protein had somewhat reduced effectiveness, most likely due to hindrance from TyA; however, its activity was sufficient for our purposes.</p>
<div align="center">
<div align="center">
<img src="https://static.igem.org/mediawiki/2013/6/6c/ATA-rtTA-His.png" width="450" height="300">
<img src="https://static.igem.org/mediawiki/2013/6/6c/ATA-rtTA-His.png" width="450" height="300">

Revision as of 03:18, 28 September 2013

iGEM 2012

Overview

  • Project Overview

miRNA Signal

  • Overview
  • siRNA Characterization
  • Exosome Isolation and Co-Culturing
  • Cell-Cell Co-Culturing

Protein Signals

  • Overview
  • GFP
  • rtTA3
  • Cre
  • L7Ae
  • Cas9-VP16

Novel DNA Sensor: Cas9 Split Venus Fusion

  • Overview
  • Leucine Zipper Fusion
  • DNA Sensing

Our BioBricks

  • Favorites
  • All BioBricks

Attributions

  • Attributions

Overview

The highly oligomeric cytoplasmic protein TyA with the N-terminal acylation tag (MGCINSKRKD-) has been shown to be targeted to exosomal budding sites on the plasma membrane and to be sorted into exosomes. When eGFP is added to the fusion of the acylation tag and TyA (Acyl-TyA), the packaging effect was observed under a microscope. The Acyl-TyA protein is used to transport the desired reverse tetracycline-controlled transactivator (rtTA) to receiver cells through exosomes.

To test the function of rtTA in single cells, a constitutive expression of rtTA is driven by the human elongation factor 1a (hEF1a) promoter. An inducible expression of enhanced blue fluorescent protein (eBFP) is obtained when the eBFP is fused with tetracycline response element (Tre) promoter. Jurkat T cells were nucleofected with both plasmids and incubated with doxycycline (Dox) concentration. The blue fluorescence was observed 48 hours post nucleofection.

To test the plasma membrane localization effect of Acyl-TyA on rtTA, rtTA is added to the Acyl-TyA sequence with 3 glysines as a linker in between. Both rtTA and Acyl-TyA-rtTA are constitutively expressed. The inducible fluorescence of eBFP as described above was measured by fluorescence activated cell sorter (FACS) machine. The cell count of blue florescence when only rtTA was present was significantly higher than the one when rtTA was fused with Acyl-TyA, which suggested the amount of Acyl-TyA-rtTA present in the cytoplasm was lower than the amount of rtTA. To further test the exportation of Acyl-TyA-rtTA into exosomes, a histine tag was added to the C terminus.

Characterization

Since it is such a crucial component in many of our exosomal cargoes, rtTA needed to be tested extensively before we could attempt to send it. In our project, rtTA is used in conjunction with doxycycline (DOX) and the TRE-tight promoter to activate genes—when DOX is absent, rtTA inhibits the promoter; conversely, when DOX is present, rtTA activates the promoter, allowing transcription of our desired protein. In this case, the output of each circuit is a fluorescent protein.

Also, as it is part of larger fusion proteins, we needed to verify its functionality. Before our verification experiments it was unclear whether the Acyl-TyA section would interfere with rtTA.

First, we needed to ensure that our rtTA sequence was correct and functional. We transfected HEK-293 cells with three circuits: constitutively expressed rtTA, mKate under the influence of the Tre-tight promoter, and constitutively expressed eBFP (used as a transfection marker only). We expected to see red fluorescence when doxycycline was added, and this was indeed the case.

Once we determined that rtTA was functional, we checked the functionality of the Acyl-TyA-rtTA fusion protein. There were concerns that the oligemerization effects of TyA would interfere with the activity of rtTA. We transfected the new Acyl-TyA-rtTA construct into HEK-293 cells, using mKate for the output and eBFP for the transfection marker like in the previous experiment. We found that the fusion rtTA still worked in the presence of doxycycline.





As previously stated, both rtTA and Acyl-TyA-rtTA worked as we had hoped. The fusion protein had somewhat reduced effectiveness, most likely due to hindrance from TyA; however, its activity was sufficient for our purposes.

The above graph shows the red fluorescence detected for Acyl-TyA-rtTA and the lone rtTA both with and without DOX. With DOX, both rtTA circuits activated the mKate. As mentioned above, rtTA alone (the green line) was more effective, and despite its lower activity, Acyl-TyA-rtTA (the blue line) was also deemed successful. The red and black lines depict the mKate activation due to each protein in the absence of DOX. As expected, there was little to no fluorescence in these cases.

Exosome Isolation and Co-Culturing

Once we confirmed that the Acyl-TyA-rtTA fusion construct was functional, we progressed to exosomal experiments. We transfected Jurkat T cells with our constitutive Acyl-TyA-rtTA, cultured them, and isolated exosomes from them. Concurrently, we cultured HEK-293 cells transfected with our receiver circuits (rtTA-induced mKate and constitutive eBFP). Then, we added DOX and the isolated exosomes to the HEK cells. Initially, we observed a negative result—no mKate was detected—but we still have further optimization to do.



Cell-Cell Co-Culturing

Once we obtain a positive result from the exosome isolation experiment, we will move on to co-culturing the engineered Jurkat sender cells and HEK-293 receiver cells in a single dish. As shown in the graphic below, we expect the Jurkat cells to produce our fusion protein and package it into exosomes. The exosomes will then diffuse throughout the culture medium and, when they encounter the HEK cells, enter them and activate the mKate if DOX is also present.