Template:Team:Bonn:NetworkData
From 2013.igem.org
(Difference between revisions)
Line 366: | Line 366: | ||
content.text=""; | content.text=""; | ||
content.type="Project" | content.type="Project" | ||
+ | break; | ||
case 41: | case 41: | ||
Line 376: | Line 377: | ||
content.text=""; | content.text=""; | ||
content.type="Project" | content.type="Project" | ||
+ | break; | ||
case 42: | case 42: | ||
Line 513: | Line 515: | ||
content.text=""; | content.text=""; | ||
content.type="Project" | content.type="Project" | ||
+ | break; | ||
Line 550: | Line 553: | ||
content.type="Project"; | content.type="Project"; | ||
break; | break; | ||
+ | |||
+ | case 56: | ||
+ | content.i =56; | ||
+ | content.parents=[53]; | ||
+ | content.childs=[]; | ||
+ | content.titleShort = "Bioreactors"; | ||
+ | content.titleLong = "Bioreactors"; | ||
+ | content.summary= "Bioreactors"; | ||
+ | content.text="Bioreactors"; | ||
+ | content.type="Project"; | ||
+ | break; | ||
+ | |||
+ | case 57: | ||
+ | content.i =57; | ||
+ | content.parents=[37]; | ||
+ | content.childs=[58,59,60,61,62,63,64]; | ||
+ | content.titleShort = "Results"; | ||
+ | content.titleLong = "Results"; | ||
+ | content.summary= "Results"; | ||
+ | content.text="Results"; | ||
+ | content.type="Project"; | ||
+ | break; | ||
+ | |||
+ | case 58: | ||
+ | content.i =58; | ||
+ | content.parents=[57]; | ||
+ | content.childs=[59]; | ||
+ | content.titleShort = "Expression mCherry"; | ||
+ | content.titleLong = "Expression mCherry"; | ||
+ | content.summary= ""; | ||
+ | content.text=""; | ||
+ | content.type="Project"; | ||
+ | break; | ||
+ | |||
case 66: | case 66: | ||
Line 559: | Line 596: | ||
content.summary= ""; | content.summary= ""; | ||
content.text= "Riboswitches can be identified as a subtopic of transcriptional and translational regulation. They are based on self-regulating mRNA, achieved by combination with an aptamer region and a ligand-binding region. Ligands can be sugars, nucleotides, metal ions or other small molecules. This enables riboswitches to bind special metabolisms in order to induce conformational changes. These conformational changes can block or free the ribosomal binding site and therefore inhibit or activate translation of the mRNA into a polypeptide. Moreover it is able to control transcription by sequestering or releasing termination sequences. In addition to that the aptamer structures can mask or unmask ribozyme binding-sites, which enables a regulated RNA-degradation<sup><a href=#66.1>[66.1]</a></sup>.</br></br> <div class='content-image'><img src='https://static.igem.org/mediawiki/2013/8/8f/Bonn.Riboswitches.jpg'></br>"Diversity of Riboswitches and Mechanisms of Gene Control in BacteriaMechanisms of modulation of gene expression are highly divergent in prokaryotes and involve control of transcription, translation, splicing, and mRNA stability"<sup><a href=#66.1>[66.1]</a></sup></div><br/><div class='content-image'><img src='https://static.igem.org/mediawiki/2013/f/ff/Bonn.Riboswitches3.jpg'></br>"Structural Principles of Ligand Recognition by Riboswitches(AC) Schematic representations of a 'straight' junctional fold"<sup><a href=#66.1>[66.1]</a></div> </br></br> <p><a name=66.1>[66.1]</a> <a href='http://www.sciencedirect.com/science/article/pii/S0092867412015462'> A Decade of Riboswitches Alexander Serganov, Evgeny Nudler, Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA;" | content.text= "Riboswitches can be identified as a subtopic of transcriptional and translational regulation. They are based on self-regulating mRNA, achieved by combination with an aptamer region and a ligand-binding region. Ligands can be sugars, nucleotides, metal ions or other small molecules. This enables riboswitches to bind special metabolisms in order to induce conformational changes. These conformational changes can block or free the ribosomal binding site and therefore inhibit or activate translation of the mRNA into a polypeptide. Moreover it is able to control transcription by sequestering or releasing termination sequences. In addition to that the aptamer structures can mask or unmask ribozyme binding-sites, which enables a regulated RNA-degradation<sup><a href=#66.1>[66.1]</a></sup>.</br></br> <div class='content-image'><img src='https://static.igem.org/mediawiki/2013/8/8f/Bonn.Riboswitches.jpg'></br>"Diversity of Riboswitches and Mechanisms of Gene Control in BacteriaMechanisms of modulation of gene expression are highly divergent in prokaryotes and involve control of transcription, translation, splicing, and mRNA stability"<sup><a href=#66.1>[66.1]</a></sup></div><br/><div class='content-image'><img src='https://static.igem.org/mediawiki/2013/f/ff/Bonn.Riboswitches3.jpg'></br>"Structural Principles of Ligand Recognition by Riboswitches(AC) Schematic representations of a 'straight' junctional fold"<sup><a href=#66.1>[66.1]</a></div> </br></br> <p><a name=66.1>[66.1]</a> <a href='http://www.sciencedirect.com/science/article/pii/S0092867412015462'> A Decade of Riboswitches Alexander Serganov, Evgeny Nudler, Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA;" | ||
- | content.type=" | + | content.type="Project"; |
break; | break; | ||
Revision as of 15:41, 3 October 2013