Team:Grenoble-EMSE-LSU/Project/Modelling/Density

From 2013.igem.org

(Difference between revisions)
Line 77: Line 77:
-
<p id="AliveCells">In this first figure, the density of living cells $C(t)$ is displayed in $OD_{600}$ units. When the light intensity is too strong, all bacteria die, when it is too weak, they grow exponentially. A particular value of the light intensity allows to get a constant density of living cells. Note that this light intensity $I^*$ should be precisely regulated, since a 2.5% increase or decrease around this particular light intensity will result in a 30% decrease or increase of the living cell density after 10h. </p>
+
<p id="AliveCells">In this first figure, the density of living cells $C(t)$ is displayed in $OD_{600}$ units. When the light intensity is too strong, all bacteria die, when it is too weak, they grow exponentially. A particular value of the light intensity allows to get a constant density of living cells. Note that this light intensity $I^*$ should be precisely regulated, since a 2.5% increase or decrease around this particular light intensity will result in a 30% decrease or increase of the living cell density after 10 hours. </p>
<center><img src="https://static.igem.org/mediawiki/2013/2/2c/Control_3_cells.png"></center>
<center><img src="https://static.igem.org/mediawiki/2013/2/2c/Control_3_cells.png"></center>
<br>
<br>
Line 100: Line 100:
<li >
<li >
<h2 id="MPC">Model Predictive Control</h2>
<h2 id="MPC">Model Predictive Control</h2>
-
<p>Since our system cannot be stabilized with a simple closed-loop control, we used a more advanced control method : Model Predictive Control. This algorithm is used to control dynamical systems. It requires a mathematical model of the behavior of the system, and the history of the past control actions. The aim is to drive our system to a setpoint by predicting the evolution of the system, and adapting the control parameter (the light intensity here) to these predictions. To do so, the control will use different kinds of variables:</p>
+
<p>Since our system cannot be stabilized with a simple closed-loop control, we used a more advanced control method : <a ref="http://en.wikipedia.org/wiki/Model_predictive_control">Model Predictive Control</a>. This algorithm is used to control dynamical systems. It requires a mathematical model of the behavior of the system, and the history of the past control actions. The aim is to drive our system to a setpoint by predicting the evolution of the system, and adapting the control parameter (the light intensity here) to these predictions. To do so, the control will use different kinds of variables:</p>
<p>$\bullet$ Some variables defines the setpoint, here, we want to drive our living bacteria concentration to a determinate value, called $C_{target}$.</p>
<p>$\bullet$ Some variables defines the setpoint, here, we want to drive our living bacteria concentration to a determinate value, called $C_{target}$.</p>
<p>$\bullet$ Some variables are measurable during the experiment. Here, the fluorescence and the optical density. They are the only observable quantities enabling us to see whether the system behaves according to plans or not.</p>
<p>$\bullet$ Some variables are measurable during the experiment. Here, the fluorescence and the optical density. They are the only observable quantities enabling us to see whether the system behaves according to plans or not.</p>

Revision as of 22:23, 3 October 2013

Grenoble-EMSE-LSU, iGEM


Grenoble-EMSE-LSU, iGEM

Retrieved from "http://2013.igem.org/Team:Grenoble-EMSE-LSU/Project/Modelling/Density"