Template:Team:Bonn:NetworkData
From 2013.igem.org
(Difference between revisions)
Line 35: | Line 35: | ||
content.titleLong = "Protein regulation mechanisms"; | content.titleLong = "Protein regulation mechanisms"; | ||
content.summary= "We compare different regulation systems, focused on advantages and disadvanteges for scienticific use"; | content.summary= "We compare different regulation systems, focused on advantages and disadvanteges for scienticific use"; | ||
- | content.text= "Understanding the role of a specific gene or DNA region is one of the key challenges in modern research. Our system, which allows the <b>fast</b> and <b>convenient</b> elimination of defined proteins, is a new improved technique, with many advantages. The following table compares methods, advantages and disadvantages of several popular regulation systems.</br></br><table><tr><td><i>Regulation system</i></td><td><i>Approach of regulation</i></td><td><i>Activating / Repressing</i></td><td><i>Advantage</i></td><td><i>Disadvantage</i></td></tr><tr><td><b>Knock-In</b></td><td>Insert of DNA</td><td>Activating</td><td>Gain of function; high difference in activity</td><td>No ON/OFF system</td></tr><tr><td><b>Knock-Out</b></td><td>Deletion of DNA</td><td>Deactivating</td><td>0% Protein in organism</td><td>No ON/OFF system</td></tr><tr><td><b>Knock-Down<b></td><td>Inhibition of RNA</td><td>Repressing</td><td>Inducible</td><td>Expensive; low difference in activity</td></tr><tr><td><b>Riboswitches</b></td><td>mRNA structure; Transcription & Translation</td><td>Activating/ repressing/ degradation</td><td>Multiple aproaches and effects</td><td>Difficult to modulate<td></tr><tr><td><b>Zymogen-like</b></td><td>Protein structure</td><td>Activating</td><td>Inducible</td><td>No deactivation</td></tr><tr><td><b>Operon</b></td><td>Transcription</td><td>Inductive (substrate)/ repressing (product)</td><td>Self-regulating in organisms</td><td>Not usable for every protein</td></tr><tr><td><b>TALEs</b></td><td>Transcription</td><td>Both</td><td>Can bind several effectors</td><td>Very specific</td></tr><tr><td><b>Zinc finger</b><td>Transcription</td><td>Both</td><td>Can bind several effectors</td><td>Very specific</td></tr><tr><td><b>Direct regulation</b></td><td>Protein affinity</td><td>Both</td><td>Very fast</td><td>Too specific for easy, general use</td></tr><tr><td><b>ClpXP protease system</b></td><td>Protein degradation</td><td>"Repressing"</td><td>Very fast & transferable</td><td> No obvious disadvantage</td></tr></table></break></br>After comparison of various different Protein regulation mechanisms, our team decided to make use of a protein degradation system. The reason was that we wanted to create such a system was that has an immediate effect and can be used to investigate functions of <b>every</b> protein.<h2>References:</h2>see following articles<li><a onclick=showNode(3)>Irreversible Protein degradation </a> | + | content.text= "Understanding the role of a specific gene or DNA region is one of the key challenges in modern research. Our system, which allows the <b>fast</b> and <b>convenient</b> elimination of defined proteins, is a new improved technique, with many advantages. The following table compares methods, advantages and disadvantages of several popular regulation systems.</br></br><table><tr><td><i>Regulation system</i></td><td><i>Approach of regulation</i></td><td><i>Activating / Repressing</i></td><td><i>Advantage</i></td><td><i>Disadvantage</i></td></tr><tr><td><b>Knock-In</b></td><td>Insert of DNA</td><td>Activating</td><td>Gain of function; high difference in activity</td><td>No ON/OFF system</td></tr><tr><td><b>Knock-Out</b></td><td>Deletion of DNA</td><td>Deactivating</td><td>0% Protein in organism</td><td>No ON/OFF system</td></tr><tr><td><b>Knock-Down<b></td><td>Inhibition of RNA</td><td>Repressing</td><td>Inducible</td><td>Expensive; low difference in activity</td></tr><tr><td><b>Riboswitches</b></td><td>mRNA structure; Transcription & Translation</td><td>Activating/ repressing/ degradation</td><td>Multiple aproaches and effects</td><td>Difficult to modulate<td></tr><tr><td><b>Zymogen-like</b></td><td>Protein structure</td><td>Activating</td><td>Inducible</td><td>No deactivation</td></tr><tr><td><b>Operon</b></td><td>Transcription</td><td>Inductive (substrate)/ repressing (product)</td><td>Self-regulating in organisms</td><td>Not usable for every protein</td></tr><tr><td><b>TALEs</b></td><td>Transcription</td><td>Both</td><td>Can bind several effectors</td><td>Very specific</td></tr><tr><td><b>Zinc finger</b><td>Transcription</td><td>Both</td><td>Can bind several effectors</td><td>Very specific</td></tr><tr><td><b>Direct regulation</b></td><td>Protein affinity</td><td>Both</td><td>Very fast</td><td>Too specific for easy, general use</td></tr><tr><td><b>ClpXP protease system</b></td><td>Protein degradation</td><td>"Repressing"</td><td>Very fast & transferable</td><td> No obvious disadvantage</td></tr></table></break></br>After comparison of various different Protein regulation mechanisms, our team decided to make use of a protein degradation system. The reason was that we wanted to create such a system was that has an immediate effect and can be used to investigate functions of <b>every</b> protein.<h2>References:</h2>see following articles<li><a onclick=showNode(3)>Irreversible Protein degradation </a></li><li><a onclick=showNode(11)> Direct inhibiton and activation</a></li><li><a onclick=showNode(9)> Transcriptional Regulation</a></li><li><a onclick=showNode(10)> Knock-down</a></li><li><a onclick=showNode(7)> Protein degradation systems</a></li><li><a onclick=showNode(ID)> </a></li>"; |
- | </li><li><a onclick=showNode(11)> Direct inhibiton and activation</a> | + | |
- | </li><li><a onclick=showNode(9)> Transcriptional Regulation</a> | + | |
- | </li><li><a onclick=showNode(10)> Knock-down</a> | + | |
- | </li><li><a onclick=showNode(7)> Protein degradation systems</a> | + | |
- | </li><li><a onclick=showNode(ID)> </a> | + | |
- | </li>"; | + | |
content.type="Background"; | content.type="Background"; | ||
break; | break; |
Revision as of 20:12, 4 October 2013