Team:Grenoble-EMSE-LSU/Project/Instrumentation/Fluo

From 2013.igem.org

(Difference between revisions)
Line 64: Line 64:
-
<p>According our the experience, the pulse train mode is not a good option since the curve doesn’t follow at all the x=y curve. Only three points are shown here because the others are worst. On the other hand, the 50% duty cycle mode seems to work better, at least at the low frequency. For frequencies under 35kHz the curve fits the equation y=x. However above this critical frequency, the response of the microcontroller seems to break down and follows the equation y=x/2. For frequencies over 100kHz, the system does not give reliable results. This is explained by the time of the "while loop" in the microcontroller program. At the end of this loop the program jump back to the beginning of the loop, but when the photodiode emits peaks at increasing frequencies, the microcontroller is not fast enough and misses one pulse out of two which explains the curves y=x then y=x/2. efficient at all, that makes us believe this is the right explanation. In addition, the plot of the standard deviation as a function of the frequency demonstrates that the system is very precise for low light intensities. The errors are below 0.5% when 100 pulses are recorded. At the lowest illuminations, the device will measure the fluorescence of the bacterial culture every 5 min, which is enough for this kind of sample. In the next paragraph, we are going to see that the device is efficient enough to measure low light intensity like fluorescence.
+
<p>According to our experiment, the pulse train mode is not a good option since the curve doesn’t follow at all the x=y curve. Only three points are shown here because the others are worst. On the other hand, the 50% duty cycle mode seems to work better, at least at the low frequency. For frequencies under 35kHz the curve fits the equation y=x. However above this critical frequency, the response of the microcontroller seems to break down and follows the equation y=x/2. For frequencies over 100kHz, the system does not give reliable results. This is explained by the time of the "while loop" in the microcontroller program. At the end of this loop the program jump back to the beginning of the loop, but when the photodiode emits peaks at increasing frequencies, the microcontroller is not fast enough and misses one pulse out of two which explains the curves y=x then y=x/2. efficient at all, that makes us believe this is the right explanation. In addition, the plot of the standard deviation as a function of the frequency demonstrates that the system is very precise for low light intensities. The errors are below 0.5% when 100 pulses are recorded. At the lowest illuminations, the device will measure the fluorescence of the bacterial culture every 5 min, which is enough for this kind of sample. In the next paragraph, we are going to see that the device is efficient enough to measure low light intensity like fluorescence.
</p>
</p>
</li>
</li>

Revision as of 22:33, 4 October 2013

Grenoble-EMSE-LSU, iGEM


Grenoble-EMSE-LSU, iGEM

Retrieved from "http://2013.igem.org/Team:Grenoble-EMSE-LSU/Project/Instrumentation/Fluo"