Team:Grenoble-EMSE-LSU/Project/Instrumentation/Fluo

From 2013.igem.org

(Difference between revisions)
Line 147: Line 147:
We are now able to control light intensity thanks to this circuit, but to connect all the electronic parts - the photodiode and this circuit - a Printed circuit board (PCB) was printed, using the Altium software.</br></br>
We are now able to control light intensity thanks to this circuit, but to connect all the electronic parts - the photodiode and this circuit - a Printed circuit board (PCB) was printed, using the Altium software.</br></br>
-
We can finally create the box to finish the device.
+
We finally designed a box to enclose our device.
Line 187: Line 187:
<p>To design the box, we used the <strong>Computer-Aided Design (CAD) software Google SketchUp</strong>. It allows us to use a <strong>3D-printer</strong>, and <strong>save time</strong> on the construction process. Our device fulfills several specifications. It needs to <strong>be mountable in an incubator</strong>, so that the culture can <strong>be agitated at 37°C</strong> and <strong>protected from outside light</strong>. Enough room should also be made to accommodate <strong>the electronic circuit and the optical components</strong>.</br></br></p>
<p>To design the box, we used the <strong>Computer-Aided Design (CAD) software Google SketchUp</strong>. It allows us to use a <strong>3D-printer</strong>, and <strong>save time</strong> on the construction process. Our device fulfills several specifications. It needs to <strong>be mountable in an incubator</strong>, so that the culture can <strong>be agitated at 37°C</strong> and <strong>protected from outside light</strong>. Enough room should also be made to accommodate <strong>the electronic circuit and the optical components</strong>.</br></br></p>
<p align="center"><img src="https://static.igem.org/mediawiki/2013/d/dd/Box_parts.png" alt="box_parts" width="500px"><p id="legend">Figure 10.<br>Main parts of the device</br>
<p align="center"><img src="https://static.igem.org/mediawiki/2013/d/dd/Box_parts.png" alt="box_parts" width="500px"><p id="legend">Figure 10.<br>Main parts of the device</br>
-
                                         <strong>1</strong> - The box with two separated parts where there are the electronic circuitry and optical components in one part and the Erlenmeyer with our engineered bacteria in the other.  </br>
+
                                         <strong>1</strong> - The box with two separated parts containing (i) the electronic circuit and the optical components and (ii) the Erlenmeyer with our engineered bacteria.  </br>
-
                                         <strong>2.a</strong> - The filter rack with, from left to right, the excitation and emission filters and the dichroic mirror, the red colored filter and a plane mirror and only a mirror that reflects the white light from the LED lamp</br>
+
                                         <strong>2.a</strong> - The filter rack with, from left to right, the excitation and emission filters and the dichroic mirror to record Killer Red fluorescence, the red colored filter and a plane mirror to induce Killer Red expression and a mirror that reflects the white light from the LED bulb for Killer Red activation.</br>
                                         <strong>2.b</strong> - The rail where the filter rack can slide</br>
                                         <strong>2.b</strong> - The rail where the filter rack can slide</br>
                                         <strong>3</strong> - The lens holder</br>
                                         <strong>3</strong> - The lens holder</br>
Line 195: Line 195:
</p>
</p>
<h3>The box</h3>
<h3>The box</h3>
-
<p>The box has been made to be mountable in an incubator. On its support, there are holes that fit the holes of the incubator so that you can simply screw them together. There are also two doors, one with a latch that enables us to easily put the Erlenmeyer and a second dedicated to the electronic circuitry and optical components. As a safety and experimental issue, the two parts are completely separated to avoid spreading the culture on the electronic part or illuminating the culture with an unwanted wavelength. There is only one hole that allows us to illuminate the sample.</p>
+
<p>The box has been made to be mountable in an incubator. On its support, there are holes that fit the holes of the incubator so that you can simply screw them together. There are also two doors, one with a latch that enables us to easily put the Erlenmeyer and a second dedicated to the electronic circuitry and optical components. As a safety and experimental issue, the two parts are completely separated to avoid spreading the culture on the electronic part or illuminating the culture with an unwanted wavelength. There is only one window that allows us to illuminate the sample.</p>
<h3>The filter rack and the rail</h3>
<h3>The filter rack and the rail</h3>
<p><img src="https://static.igem.org/mediawiki/2013/f/fb/Talk%27E_filter.png" alt="filter_rack_inside_box" style="float:left;margin: 25px;" width="300px"/>To create the filter rack, we were inspired by a cube filter which is composed of two excitation filters – green and blue, two emission filters – red and yellow, and two dichroic mirrors.  We re-designed it on SketchUp by adding two additional slots. The first slot is used to measure the red fluorescence of KillerRed. There is a green excitation filter on the top, a red emission filter on one side and a dichroic mirror between the two pieces.  A red colored filter is on the top of the second slot to induce the KillerRed protein production. There is no filter in the third slot because it is used to activate ROS emission with white light. Since the light comes from above, there is a plate mirror between the two pieces under the slots two and three. The last slot was planned for further use, for instance to measure back-scattering of the cell suspension. For such measure, a colored filter and a half-reflecting mirror would be used. Back-scattering would provide information about the total number of bacteria, similar to OD600nm recording.</br>
<p><img src="https://static.igem.org/mediawiki/2013/f/fb/Talk%27E_filter.png" alt="filter_rack_inside_box" style="float:left;margin: 25px;" width="300px"/>To create the filter rack, we were inspired by a cube filter which is composed of two excitation filters – green and blue, two emission filters – red and yellow, and two dichroic mirrors.  We re-designed it on SketchUp by adding two additional slots. The first slot is used to measure the red fluorescence of KillerRed. There is a green excitation filter on the top, a red emission filter on one side and a dichroic mirror between the two pieces.  A red colored filter is on the top of the second slot to induce the KillerRed protein production. There is no filter in the third slot because it is used to activate ROS emission with white light. Since the light comes from above, there is a plate mirror between the two pieces under the slots two and three. The last slot was planned for further use, for instance to measure back-scattering of the cell suspension. For such measure, a colored filter and a half-reflecting mirror would be used. Back-scattering would provide information about the total number of bacteria, similar to OD600nm recording.</br>

Revision as of 00:34, 5 October 2013

Grenoble-EMSE-LSU, iGEM


Grenoble-EMSE-LSU, iGEM

Retrieved from "http://2013.igem.org/Team:Grenoble-EMSE-LSU/Project/Instrumentation/Fluo"