Team:ETH Zurich
From 2013.igem.org
(Difference between revisions)
Line 39: | Line 39: | ||
Our model turned out to be very valuable in the circuit refinement and the design of experiments. Moreover, we continually improve out model by incorporating parameters from our own experimental data. | Our model turned out to be very valuable in the circuit refinement and the design of experiments. Moreover, we continually improve out model by incorporating parameters from our own experimental data. | ||
</li> | </li> | ||
- | <li><b><br> | + | <li><b><br>Experimental Results</b> |
</li> | </li> | ||
<li><b><br>Human practice</b><br><br>Inspired by our Colisweeper project, we analyzed the relationship between synthetic biology and games. For one thing synthetic biology can be used to play common games in a new way, possibly for educational purposes or as a basis for proof-of-principle experiments for new circuits. More recently synthetic biologists also started to use games as a research tool, an innovative approach to make use of crowd-sourcing and distributed computing. We want to find correlations and discuss possible consequences for Synthetic Biology. | <li><b><br>Human practice</b><br><br>Inspired by our Colisweeper project, we analyzed the relationship between synthetic biology and games. For one thing synthetic biology can be used to play common games in a new way, possibly for educational purposes or as a basis for proof-of-principle experiments for new circuits. More recently synthetic biologists also started to use games as a research tool, an innovative approach to make use of crowd-sourcing and distributed computing. We want to find correlations and discuss possible consequences for Synthetic Biology. |
Revision as of 08:45, 24 October 2013