Team:Heidelberg/Templates/Modelling/Ind-Production

From 2013.igem.org

(Difference between revisions)
(Created page with "<html> <h2 id="Challenge"> Challenge </h2> Based on coupled ordinary differential equations (ODEs). Mathematical modelling allows for <bib id="pmid24098642"/> Identifiability an...")
Line 6: Line 6:
 +
<h2 id="Approach"> Approach </h2>
The ODE system determining the time evolution of the dynamical variables is given by the following four equations:
The ODE system determining the time evolution of the dynamical variables is given by the following four equations:
-
 
<p>
<p>
Line 18: Line 18:
$$\mathrm{d}\mathrm{[Ind]}/\mathrm{d}t = {\mathrm{[cGlu]}}^2 \cdot  \mathrm{kdim\_native\_svp} - \mathrm{[Ind]} \cdot  \mathrm{kdegi\_native\_svp} $$
$$\mathrm{d}\mathrm{[Ind]}/\mathrm{d}t = {\mathrm{[cGlu]}}^2 \cdot  \mathrm{kdim\_native\_svp} - \mathrm{[Ind]} \cdot  \mathrm{kdegi\_native\_svp} $$
</p>
</p>
 +
 +
<h2 id="Results"> Results </h2>
 +
 +
<h2 id="Conclusion"> Conclusion and Outlook </h2>
 +
 +
</html>
</html>

Revision as of 10:51, 27 October 2013

Challenge

Based on coupled ordinary differential equations (ODEs). Mathematical modelling allows for Identifiability analysis

Approach

The ODE system determining the time evolution of the dynamical variables is given by the following four equations:

$$ \mathrm{d}\mathrm{[Bac]}/\mathrm{d}t = -\frac{\mathrm{[Bac]} \cdot \left(\mathrm{[Bac]} - \mathrm{Bacmax\_native\_svp}\right) \cdot \left(\mathrm{beta\_native\_svp} - \mathrm{[Ind]} \cdot \mathrm{ki\_native\_svp}\right)}{\mathrm{Bacmax\_native\_svp}} $$ $$\mathrm{d}\mathrm{[Glu]}/\mathrm{d}t = - \mathrm{[Bac]} \cdot \mathrm{[Glu]} \cdot \mathrm{ksyn\_native\_svp} $$ $$\mathrm{d}\mathrm{[cGlu]}/\mathrm{d}t = - \mathrm{kdim\_native\_svp} \cdot {\mathrm{[cGlu]}}^2 - \mathrm{kdegg\_native\_svp} \cdot \mathrm{[cGlu]} + \mathrm{[Bac]} \cdot \mathrm{[Glu]} \cdot \mathrm{ksyn\_native\_svp} $$ $$\mathrm{d}\mathrm{[Ind]}/\mathrm{d}t = {\mathrm{[cGlu]}}^2 \cdot \mathrm{kdim\_native\_svp} - \mathrm{[Ind]} \cdot \mathrm{kdegi\_native\_svp} $$

Results

Conclusion and Outlook