Team:Heidelberg/Templates/Modelling/Ind-Production
From 2013.igem.org
Line 5: | Line 5: | ||
Mathematical modelling allows for <bib id="pmid24098642"/> Identifiability analysis<bib id="pmid21198117"/> | Mathematical modelling allows for <bib id="pmid24098642"/> Identifiability analysis<bib id="pmid21198117"/> | ||
- | We adapted our ODE for bacterial growth from equation (7) | + | We adapted our ODE for bacterial growth from equation (7) of Kenneth and Kamau, 1993 <bib id="pmid24123647"/>. |
Revision as of 13:54, 27 October 2013
Challenge
Based on coupled ordinary differential equations (ODEs). Mathematical modelling allows forApproach
The ODE system determining the time evolution of the dynamical variables is given by the following four equations:$$ \mathrm{d}\mathrm{[Bac]}/\mathrm{d}t = -\frac{\mathrm{[Bac]} \cdot \left(\mathrm{[Bac]} - \mathrm{Bacmax\_native\_svp}\right) \cdot \left(\mathrm{beta\_native\_svp} - \mathrm{[Ind]} \cdot \mathrm{ki\_native\_svp}\right)}{\mathrm{Bacmax\_native\_svp}} $$ $$\mathrm{d}\mathrm{[Glu]}/\mathrm{d}t = - \mathrm{[Bac]} \cdot \mathrm{[Glu]} \cdot \mathrm{ksyn\_native\_svp} $$ $$\mathrm{d}\mathrm{[cGlu]}/\mathrm{d}t = - \mathrm{kdim\_native\_svp} \cdot {\mathrm{[cGlu]}}^2 - \mathrm{kdegg\_native\_svp} \cdot \mathrm{[cGlu]} + \mathrm{[Bac]} \cdot \mathrm{[Glu]} \cdot \mathrm{ksyn\_native\_svp} $$ $$\mathrm{d}\mathrm{[Ind]}/\mathrm{d}t = {\mathrm{[cGlu]}}^2 \cdot \mathrm{kdim\_native\_svp} - \mathrm{[Ind]} \cdot \mathrm{kdegi\_native\_svp} $$