Team:WHU-China/templates/standardpage modeling
From 2013.igem.org
(Difference between revisions)
IgnatzZeng (Talk | contribs) |
IgnatzZeng (Talk | contribs) |
||
Line 20: | Line 20: | ||
<div style="text-align:center;width:100%;"> | <div style="text-align:center;width:100%;"> | ||
<table style="text-align:left;"> | <table style="text-align:left;"> | ||
- | <tr><td>Definition</td><td></td></tr> | + | <tr><td class="topstike" style="border-right:0;">Definition</td><td class="topstike" style="border-left:0;"> </td></tr> |
<tr><td class="topstike">Relative Strength</td><td class="topstike">The relative strength of certain promoter is defined by let the strength of Anderson promoter BBa_J23100 equals to one (in E.coli), and adjust the strength of other promoters accordingly. | <tr><td class="topstike">Relative Strength</td><td class="topstike">The relative strength of certain promoter is defined by let the strength of Anderson promoter BBa_J23100 equals to one (in E.coli), and adjust the strength of other promoters accordingly. | ||
(<a href="http://parts.igem.org/Promoters/Catalog/Anderson">http://parts.igem.org/Promoters/Catalog/Anderson</a>) | (<a href="http://parts.igem.org/Promoters/Catalog/Anderson">http://parts.igem.org/Promoters/Catalog/Anderson</a>) | ||
</td></tr> | </td></tr> | ||
<tr><td class="topstike">Normalized Strength</td><td class="topstike">The normalized strength of certain promoter is calculated by dividing the strength of the promoter by the highest promoter strength in the host. The highest promoter strength can be reached by creating artificial tandem promoter constitutes of the strongest known promoter.</td></tr> | <tr><td class="topstike">Normalized Strength</td><td class="topstike">The normalized strength of certain promoter is calculated by dividing the strength of the promoter by the highest promoter strength in the host. The highest promoter strength can be reached by creating artificial tandem promoter constitutes of the strongest known promoter.</td></tr> | ||
- | <tr><td class="topstike">Symbol</td><td class="topstike"></td></tr> | + | <tr><td class="topstike" style="border-right:0;">Symbol</td><td class="topstike" style="border-left:0;"> </td></tr> |
<tr><td class="topstike">[ ]</td><td class="topstike">The symbol of concentration, i.e. [Protein] means the concentration of the protein</td></tr> | <tr><td class="topstike">[ ]</td><td class="topstike">The symbol of concentration, i.e. [Protein] means the concentration of the protein</td></tr> | ||
<tr><td class="topstike">ptot / y</td class="topstike"><td>The probability of at least one RNAP(with all of its subunit) binding on the tandem promoter. It also means the normalized strength of the promoter.</td></tr> | <tr><td class="topstike">ptot / y</td class="topstike"><td>The probability of at least one RNAP(with all of its subunit) binding on the tandem promoter. It also means the normalized strength of the promoter.</td></tr> |
Revision as of 05:23, 28 October 2013
1. Overview
For a pdf version of the tandem promoter modeling part,click here
This model aims at predicting the final output of a tandem-repeat promoter system, which constitutes of repeated identical sub-promoter. The key idea of the model is that the strength of a promoter system is proportional to the probability of at least one RNA Polymerase (mentioned as RNAP latter) binding on the promoter.
2. Symbol table, Assumption and reasons.
Definition | |
Relative Strength | The relative strength of certain promoter is defined by let the strength of Anderson promoter BBa_J23100 equals to one (in E.coli), and adjust the strength of other promoters accordingly. (http://parts.igem.org/Promoters/Catalog/Anderson) |
Normalized Strength | The normalized strength of certain promoter is calculated by dividing the strength of the promoter by the highest promoter strength in the host. The highest promoter strength can be reached by creating artificial tandem promoter constitutes of the strongest known promoter. |
Symbol | |
[ ] | The symbol of concentration, i.e. [Protein] means the concentration of the protein |
ptot / y | The probability of at least one RNAP(with all of its subunit) binding on the tandem promoter. It also means the normalized strength of the promoter. |
n / x | The number of sub-promoters in the tandem promoter system. |
u | Number of copies of a tandem promoter in a cell |
ξ | Strength constant, equals to the strongest expression level possible (units in fluorenes normalized by a internal reference). |
V | The volume of a cell |
pi | The probability of a RNAP(with all of its subunit) form a RNAP-with complex with the ith sub-promoter in the tandem promoter system. |
qi | qi=1-pi, the probability of a RNAP not binding to the ith sub-promoter |
j | Cooperative factor |
α | Transcription rate constant |
λ | mRNA degradation constant |
v | Translation rate constant |
k | Protein degradation constant |
RNAP | RNA Polymerase |
ODE | Ordinary Differential Equation |
RP / RPc | RNAP-Promoter complex, inactive complex |
RPi | Intermediate complex |
RPo | Open complex |
- 1.It’s assumed that the promoter strength is measured in the same species, with identical environment and growing stage. This ensures that the concentration of all subunits of RNAP, all subunits of ribosome, all RNA degradation enzymes, all kind of proteases and all transportation protein are almost the same.
- 2.In all measurement, the contexts of the promoters remain the same. i.e. same RBS, terminator, protein sequence, up stream element, down stream element and DNA supercoiling.
- 3.All transcriptional factors are not considered in this version of the model, but can be included in the model with some modification to the equations.
- 4.The promoter region is accessible for RNAP(and all kinds of its subunits), which means it’s not in heterochromatin region or any other condition that hamper a normal RNAP-DNA interaction.
- 5.The probability of RNAP binding on the region between two sub-promoter within the tandem promoter system is neglected. As it contributes too little to final ptot.
- 6.The RNAP-DNA binding is assumed to stay on equilibrium in the model. This is reasonable because the open complex formation is a slow rate limiting step of transcription. So in the time scale of open complex formation, RNAP-DNA binding can always reach its equilibrium in neglectable time[1][2]. It’s also observed that the inactive RNAP-DNA complex can be detected on the DNA[3]. (*The following assumption is adopted by the commonly used thermodynamic based model [1], but it’s challenged in the later part of the model. We will first keep this assumption to derive the model, and modified the model for conditions that this assumption do not work. The weakness of this assumption is discussed in detail in here and here链接)
- 7.The probability (the speed) of RPc transforming to RPo is identical to all promoter, i.e. The strength of a promoter is merely related with the probability of RNAP binding to it. it enable us to calculate the promoter strength from the probability of RNAP binding to the promoter.
3. Modeling result
We found that the strength of a tandem promoter system can be interpreted by a simple equation:
Figure 1. Model fitting result
Y-axis represent the normalized promoter strength, X-axis the number of sub-promoter
The blue dot is data extracted from ref.[4] fig.2, the red line is the prediction made by our model,the red dotted line is the 95% prediction bound
This model explains 99% of the tandem promoter strength variation caused by
- 1.number of sub-promoter,
- 2.kind of sub-promoter,
- 3.order of sub-promoter .
4.Model derivation
The promoter strength may be influenced by various factors. We need to simplify the system into some reasonable toy model by wiping out all relatively trivial factor. 4.1 Expression level Measurement We use the fluorescence strength to indicate the strength of the promoter(Normalized by a inner reference fluorescence protein(FP) - mCherry. Please check details at the experiment part). Because when the exciting light is fixed, the fluorescence is proportional to the concentration of FP. And FP can be lighted up in a short time after they are synthesis. 4.2 Translation and transcription According to the Central Dogma
Figure 2.Model fitting result of the simpler model
As only one RNAP is needed to initiate the transcription in a tandem promoter system (the other RNAP will be blocked by the RNAP closest to the transcription initiation point). So the probability of at least one RNAP binding to the promoter is
Figure 3. Curve fitting residual plot of the simpler model
Data analysis shows that the data increase in y much quicker than our prediction, which indicate there will be some kind of cooperation among sub-promoters. This results in pij>pipj. The cooperation can be explained by the fact that the binding possibility of each sub-promoter is actually not completely independent. The Clustering of promoter make a RNAP that falls out from one promoter has a slightly great possibility to bind with the promoter surrounding the former promoter. This phenomenon has not been catched by the Boltzmann factor we used to calculate the relationship between pij and pipj. So in order to fix this failure, it’s alright to add a cooperative term into the model. Therefore equation 2 comes out, with nj as the cooperative factor.
Figure 4. Curve fitting residual plot of the final model