Team:Rutgers

From 2013.igem.org

(Difference between revisions)
Line 4: Line 4:
<html>
<html>
<head>
<head>
-
<title>Rutgers 2012 iGEM Team: Biofuels in Bacteria</title>
+
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
 +
<title>Rutgers 2011 iGEM Team: Complex Circuits in Synthetic Biology</title>
-
<style>
 
-
body, ul, li {
 
-
font-size:16px;
 
-
font-family:Arial, Helvetica, sans-serif;
 
-
line-height:21px;
 
-
text-align:left;
 
-
}
 
-
body {
 
-
/* IE10 Consumer Preview */
+
</style>
-
background-image: -ms-radial-gradient(right top, circle farthest-corner, #E8E685 0%, #2EE0A2 60%, #0009E1 100%);
+
-
 
+
-
/* Mozilla Firefox */
+
-
background-image: -moz-radial-gradient(right top, circle farthest-corner, #E8E685 0%, #2EE0A2 60%, #0009E1 100%);
+
-
 
+
-
/* Opera */
+
-
background-image: -o-radial-gradient(right top, circle farthest-corner, #E8E685 0%, #2EE0A2 60%, #0009E1 100%);
+
-
 
+
-
/* Webkit (Safari/Chrome 10) */
+
-
background-image: -webkit-gradient(radial, right top, 0, right top, 1012, color-stop(0, #E8E685), color-stop(.6, #2EE0A2), color-stop(1, #0009E1));
+
-
/* Webkit (Chrome 11+) */
 
-
background-image: -webkit-radial-gradient(right top, circle farthest-corner, #E8E685 0%, #2EE0A2 60%, #0009E1 100%);
 
-
/* W3C Markup, IE10 Release Preview */
 
-
background-image: radial-gradient(circle farthest-corner at right top, #E8E685 0%, #2EE0A2 60%, #0009E1 100%);
 
 +
<style type="text/css">
 +
<!--
 +
.style3 {
 +
text-align: center;
}
}
 +
-->
</style>
</style>
-
 
-
 
-
 
</head>
</head>
<body leftmargin="0" topmargin="0" marginwidth="0" marginheight="0">
<body leftmargin="0" topmargin="0" marginwidth="0" marginheight="0">
-
<table width="50%" border="0" align="center" cellpadding="0" cellspacing="20" bordercolor="#F1F1F1" background="https://static.igem.org/mediawiki/2012/2/25/Chevbg1.png" >
+
<table width="900px" border="0" align="center" cellpadding="0" cellspacing="20" bordercolor="#F1F1F1" background="https://static.igem.org/mediawiki/2011/9/96/Stripe.png" >
-
    
+
  <tr>
 +
    <td height="58" colspan="2" td background="https://static.igem.org/mediawiki/2011/9/96/Stripe.png"><p class="style3">RUTGERS iGEM TEAM WIKI<br />
 +
      </p></td>
 +
   </tr>
   <tr>
   <tr>
-
     <td width="69%" valign="top" align="center" class="stuff"><p><img src="https://static.igem.org/mediawiki/2012/0/06/Topheader.png" width="800" height="500" class="imgshadow0" /></p></td>
+
     <td width="9%" valign="top" class="stuff"><p><img src="http://gears.rutgers.edu/images/top_smallest.png" width="1000" height="278" class="imgshadow0" /></p></td>
   </tr>
   </tr>
    
    
Line 51: Line 35:
   <tr>
   <tr>
     <td width="69%" class="imgshadow2"><blockquote>
     <td width="69%" class="imgshadow2"><blockquote>
-
 
-
 
       <table width="100%" border="0" cellspacing="5" cellpadding="5">
       <table width="100%" border="0" cellspacing="5" cellpadding="5">
         <tr>
         <tr>
-
           <td width="66%" background="stripe.png" td><h2> <span class="shadow">Abstract</span><br />
+
           <td colspan="3" td background="stripe.png"><h2> <span class="shadow">Welcome</span><br />
           </h2></td>
           </h2></td>
           </tr>
           </tr>
-
 
-
 
         <tr>
         <tr>
          
          
-
           <td class="stuff"><p align="justify">The current fossil fuel-dependent economy drives a demand for sustainable energy resources. Although much effort has gone into the production of ethanol, other biofuels, such as butanol, are superior.</p>
+
           <td colspan="3" class="stuff"><p>For the Rutgers iGEM Team, complex is simple! The Rutgers iGEM Team has designed two complex genetic circuits, Etch-a-Sketch and Full Adder, and created a software tool, MYS!S. The Etch-a-Sketch circuit enables a lawn of bacteria to be drawn on with a laser. This seemingly inconsequential task presents many engineering challenges: the bacteria need to be sensitive in order to respond to a laser pulse, yet selective to use in ambient lighting. The second circuit allows bacteria to emulate a digital full adder. The circuit makes use of individually non-functional split reporters that can reform functional reporters with the help of fused “zipper” domains. In addition to the circuit, we have made easily fuse-able biobricks of these domains in order to facilitate the engineering of more split proteins, which should assist in the creation of logic circuits. MYS!S aims to improve the parts registry by checking and giving directions to modify Biobricks to conform to assembly standards.</p>
-
             <p align="justify"><a href="https://2012.igem.org/Team:Rutgers/BIB">Butanol</a> has a higher energy content, is less volatile, and is safer to use than ethanol. To develop strains of bacteria that produce high levels of 1-butanol we have introduced the genes coding for a biochemical pathway from <em>Clostridium acetobutylicum</em> into a mutant <em>E. coli</em> strain that produces a high level of NADH. The combination of these chemical pathways is predicted to increase the level of butanol production. </p>
+
             <p align="center"> <a href="https://2011.igem.org/Team:Rutgers/Team"><img src="http://www.rutgersigem.com/_/rsrc/1308671049435/team-members/group_pic_smaller.PNG"/></a></p></td>
-
             <p align="justify">Our second project, the <a href="https://2012.igem.org/Team:Rutgers/BEAS">Bacterial Etch-a-Sketch</a>, features a complex network of gene expression and repression that enables a lawn of bacteria to respond to 470nm light. This task presents many engineering challenges: the bacteria need to be sensitive enough to respond to a laser pulse, yet selective enough to use in ambient lighting. </p>
+
          </tr>
-
             </td>
+
        <tr>
 +
          <td width="25%" background="stripe.png" td><h2 class="shadow"> Etch-a-Sketch</h2></td>
 +
          <td width="25%" background="stripe.png" td><h2 class="shadow"> Full Adder</h2></td>
 +
          <td background="stripe.png" td><h2 class="shadow">  Mysis</h2></td>
 +
          </tr>
 +
        <tr>
 +
          <td width="33%" valign="top" span class="stuff"><p>The Etch-a-Sketch project aims to create a lawn of bacteria that can be drawn on with a laser pointer. This seemingly inconsequential task actually presents many interesting engineering challenges. In particular, the bacteria need to be extremely sensitive in order to respond to a short light pulse from a laser, but they still must be “selective” enough to use in ambient lighting.</p>
 +
            <p>We have designed a novel genetic switch that we hope will tackle these problems. If our work will serve as a useful model for future projects that require massive signal amplification. In particular, researchers creating biosensors may find our work very helpful.</p>
 +
           
 +
            <p><a href="https://2011.igem.org/Team:Rutgers/EAS1"><img src="https://static.igem.org/mediawiki/2011/7/70/More.png" width="128" height="44" /></a></p>
 +
            <div id="onready"></div>
 +
           
 +
         
 +
          <td width="33%" valign="top" span class="stuff"><p>The Full Adder project seeks to create bacteria that can mimic a digital full adder. This seemingly complex problem can be greatly simplified if we use a certain simple “encoding” on the outputs of the full adder. The full adder incorporates different types of AND gates, including one that incorporates split protein interactions with zipper linker domains. By allowing proteins to be split and reassociated, the zipper domains promise to bring new possibilities to future iGem projects.</p>
 +
             <p>Our insights may prove useful to any genetic engineer or synthetic biologist working on highly complex systems. The zipper linker domains create possibilities of new AND interactions, making complexity in future biologic circuits simple. The bacterial full adder may very well become the ancestor to more complicated biological calculators in the future.</p>
 +
            <p><a href="https://2011.igem.org/Team:Rutgers/FA1"><img src="https://static.igem.org/mediawiki/2011/7/70/More.png" width="128" height="44" /></a></p></td>
 +
          <td width="33%" valign="top" span class="stuff"><p>A major problem with the current Parts Registry, a library of BioBricks submitted by iGEM teams, is that many parts do not strictly conform to the BioBrick standard which makes certain operations extremely difficult. Rutger's iGEM software team strives to provide a tool to improve the standard parts registry by checking, and if need be modifying, the BioBrick parts.</p>
 +
            <p>The basic idea is that before a team submits their new BioBrick, it will run the genetic sequences through MYS!S. MYS!S will output the modified genetic sequence, BioCoder source code, and the lab protocol needed to change the unmodified sequence into the modified sequence The long term goal of the project is to further the automation of lab protocols by specifying them through algorithms.</p>
 +
             <p><a href="https://2011.igem.org/Team:Rutgers/MYS!S"><img src="https://static.igem.org/mediawiki/2011/7/70/More.png" width="128" height="44" /></a><br />
 +
            </p></td>
           </tr>
           </tr>
       </table>
       </table>
       <p>&nbsp;</p>
       <p>&nbsp;</p>
-
  </blockquote>  </tr>
+
       <table width="90%" border="0" cellspacing="0" cellpadding="0">
-
 
+
-
 
+
-
 
+
-
  <tr>
+
-
    <td width="69%" class="imgshadow2"><blockquote>
+
-
+
-
+
-
       <table width="100%" border="0" cellspacing="5" cellpadding="5">
+
-
       
+
-
+
         <tr>
         <tr>
-
           <td width="33%" background="stripe.png" td><h2 align="center" class="shadow">Biofuels in Bacteria</h2></td>
+
           <td><h2 class="shadow">Our Sponsors</h2></td>
-
          <td width="33%" background="stripe.png" td><h2 align="center" class="shadow">Bacterial Etch-a-Sketch</h2></td>
+
           </tr>
           </tr>
         <tr>
         <tr>
-
           <td width="33%" valign="top" span class="stuff"><p align="justify"><a href="https://2012.igem.org/Team:Rutgers/BIB">Genetically modified biological systems can provide direct industrial approaches to the production of commodity chemicals.  The ability to manipulate chemical pathways with the tools of synthetic biology has opened new doors in the renewable energy industry.  </a></p>
+
           <td><p>&nbsp;</p>
-
            <p align="justify"><a href="https://2012.igem.org/Team:Rutgers/BIB">This year, the Rutgers iGEM team has engineered a bacterial strain that can produce 1-butanol, a highly efficient biofuel that is able to generate up to 95% the energy produced by the combustion of gasoline.</a></p>
+
            <p><a href="https://www.vwrsp.com/" imageanchor="1" rel="nofollow"><img alt="https://www.vwrsp.com/" border="0" height="87" src="http://www.rutgersigem.com/_/rsrc/1316984625451/home/vwr_tag_800.gif?height=87&amp;width=320" width="320" /></a> <a href="www.invitrogen.com"><img border="0" src="http://www.rutgersigem.com/_/rsrc/1314028088138/home/invitrogen.png" /></a></p>
-
            <p align="justify"><a href="https://2012.igem.org/Team:Rutgers/BIB">&gt; Biofuels in Bacteria &lt; </a></p>
+
<p><a href="www.qiagen.com"><img border="0" height="170" src="http://www.rutgersigem.com/_/rsrc/1312913435964/home/index.jpg?height=170&amp;width=200" width="200" /></a> <a href="http://www.macrogenusa.com/"><img border="0" src="http://www.rutgersigem.com/_/rsrc/1312913282213/home/Macrogen_logo_medium-300x75.jpg" /></a></p>
-
            <p align="justify"><a href="https://2012.igem.org/Team:Rutgers/BIB2">&gt; GENETIC CIRCUIT &lt; </a></p>
+
<p>&nbsp;</p></td>
-
            <p align="justify"><a href="https://2012.igem.org/Team:Rutgers/BIB3">&gt; RESULTS &lt; </a></p>
+
-
            <td width="33%" valign="top" span class="stuff"><p align="justify"><a href="https://2012.igem.org/Team:Rutgers/BEAS">The Etch-a-Sketch project aims to create a lawn of bacteria that can be drawn on with a laser pointer. This seemingly inconsequential task actually presents many interesting engineering challenges. </a></p>
+
-
            <p align="justify"><a href="https://2012.igem.org/Team:Rutgers/BEAS">We have designed a novel genetic switch that we hope will tackle these problems. If our work will serve as a useful model for future projects that require massive signal amplification. In particular, researchers creating biosensors may find our work very helpful.</a></p>
+
-
            <p align="justify"><a href="https://2012.igem.org/Team:Rutgers/BEAS">&gt; Bacterial Etch-a-Sketch &lt; </a></p>           </td>
+
           </tr>
           </tr>
       </table>
       </table>
       <p>&nbsp;</p>
       <p>&nbsp;</p>
-
  </blockquote>  </tr>
+
      <p>&nbsp;</p>
 +
    </blockquote>   
 +
      </tr>
    
    
    
    
-
 
 
-
 
 
-
 
 
-
  <tr>
 
-
    <td width="69%" class="imgshadow2"><blockquote>
 
-
<table width="90%" border="0" align="center" cellpadding="0" cellspacing="0">
 
-
        <tr>
 
-
          <td><h2 class="shadow">Our Sponsors</h2></td>
 
-
        </tr>
 
-
        <tr>
 
-
          <td><p><img src="https://static.igem.org/mediawiki/igem.org/3/3b/Screen_Shot_2012-10-03_at_10.49.00_PM.png" scr="https://static.igem.org/mediawiki/igem.org/3/3b/Screen_Shot_2012-10-03_at_10.49.00_PM.png"></p>            </td>
 
-
        </tr>
 
       </table>
       </table>
 +
<tr>
 +
  <td width="69%" class="imgshadow2"><blockquote>&nbsp;</blockquote>
 +
</tr>
 +
<td colspan="2" td background="https://static.igem.org/mediawiki/2011/9/96/Stripe.png"><p>&nbsp;</p>
 +
  <p>&nbsp;</p>
 +
  <p>&nbsp;</p>
 +
  <p>&nbsp;</p></td>
   </tr>
   </tr>
</table>
</table>
-
<tr>
+
 
-
<td width="69%" class="imgshadow2"><blockquote>&nbsp;</blockquote></tr><td colspan="2" td background="chevpg.png">&nbsp;</td>
+
<p>&nbsp;</p>
 +
  <p>&nbsp;</p>
 +
  <p>&nbsp;</p>
 +
<p>&nbsp;</p>
 +
  <p>&nbsp;</p>
 +
  <p>&nbsp;</p>
 +
  <p>&nbsp;</p>
</body>
</body>
</html>
</html>

Revision as of 17:29, 7 August 2013

Rutgers iGEM wiki

Rutgers 2011 iGEM Team: Complex Circuits in Synthetic Biology

RUTGERS iGEM TEAM WIKI

Welcome

For the Rutgers iGEM Team, complex is simple! The Rutgers iGEM Team has designed two complex genetic circuits, Etch-a-Sketch and Full Adder, and created a software tool, MYS!S. The Etch-a-Sketch circuit enables a lawn of bacteria to be drawn on with a laser. This seemingly inconsequential task presents many engineering challenges: the bacteria need to be sensitive in order to respond to a laser pulse, yet selective to use in ambient lighting. The second circuit allows bacteria to emulate a digital full adder. The circuit makes use of individually non-functional split reporters that can reform functional reporters with the help of fused “zipper” domains. In addition to the circuit, we have made easily fuse-able biobricks of these domains in order to facilitate the engineering of more split proteins, which should assist in the creation of logic circuits. MYS!S aims to improve the parts registry by checking and giving directions to modify Biobricks to conform to assembly standards.

Etch-a-Sketch

Full Adder

Mysis

The Etch-a-Sketch project aims to create a lawn of bacteria that can be drawn on with a laser pointer. This seemingly inconsequential task actually presents many interesting engineering challenges. In particular, the bacteria need to be extremely sensitive in order to respond to a short light pulse from a laser, but they still must be “selective” enough to use in ambient lighting.

We have designed a novel genetic switch that we hope will tackle these problems. If our work will serve as a useful model for future projects that require massive signal amplification. In particular, researchers creating biosensors may find our work very helpful.

The Full Adder project seeks to create bacteria that can mimic a digital full adder. This seemingly complex problem can be greatly simplified if we use a certain simple “encoding” on the outputs of the full adder. The full adder incorporates different types of AND gates, including one that incorporates split protein interactions with zipper linker domains. By allowing proteins to be split and reassociated, the zipper domains promise to bring new possibilities to future iGem projects.

Our insights may prove useful to any genetic engineer or synthetic biologist working on highly complex systems. The zipper linker domains create possibilities of new AND interactions, making complexity in future biologic circuits simple. The bacterial full adder may very well become the ancestor to more complicated biological calculators in the future.

A major problem with the current Parts Registry, a library of BioBricks submitted by iGEM teams, is that many parts do not strictly conform to the BioBrick standard which makes certain operations extremely difficult. Rutger's iGEM software team strives to provide a tool to improve the standard parts registry by checking, and if need be modifying, the BioBrick parts.

The basic idea is that before a team submits their new BioBrick, it will run the genetic sequences through MYS!S. MYS!S will output the modified genetic sequence, BioCoder source code, and the lab protocol needed to change the unmodified sequence into the modified sequence The long term goal of the project is to further the automation of lab protocols by specifying them through algorithms.


 

Our Sponsors

 

https://www.vwrsp.com/