Team:Waterloo

From 2013.igem.org

(Difference between revisions)
(More team members and some project page changes.)
(Turned gallery into a slideshow.)
Line 6: Line 6:
     TODO:
     TODO:
     - New team page with art and zooming photos.
     - New team page with art and zooming photos.
-
    - Slideshow view for the gallery.
 
-
    - Biobrick sections.
 
-
    - Full names.
 
-
    - Remove dark background.
 
   -->
   -->
   <head>
   <head>
Line 80: Line 76:
         width: 1905px;
         width: 1905px;
         left: -465px;
         left: -465px;
-
         background-image: url('https://static.igem.org/mediawiki/2013/6/68/Waterloo_dark_background.jpg');
+
         /*background-image: url('https://static.igem.org/mediawiki/2013/6/68/Waterloo_dark_background.jpg');*/
 +
        background-color: black;
         background-size: 1905px;
         background-size: 1905px;
       }
       }
Line 451: Line 448:
       oncol++;
       oncol++;
     }
     }
 +
    return root;
 +
  }
 +
 +
  function createPhotoSlideshow(names_to_urls, delay, img_width) {
 +
    var root = $('<div class="slideshow"></div>');
 +
    var first = true;
 +
    var total_imgs = 0;
 +
    var fade_time = delay / 6;
 +
    for (var name in names_to_urls) {
 +
      if (!names_to_urls.hasOwnProperty(name)) continue;
 +
      total_imgs++;
 +
      var url = names_to_urls[name];
 +
      var img = $('<img class="slideshowImage" style="width: {1}px;" src="{0}" />'.format(url, img_width));
 +
      if (first) {
 +
        first = false;
 +
      } else {
 +
        img.addClass('hiddenElement');
 +
        img.css('opacity', '0');
 +
      }
 +
      root.append(img);
 +
    }
 +
    var img_idx = 0;
 +
    setInterval(function() {
 +
      var old_img = root.children().eq(img_idx);
 +
      old_img.animate({ opacity: 0 }, { duration: fade_time, complete: function() {
 +
        old_img.addClass('hiddenElement');
 +
        if (++img_idx >= total_imgs) img_idx = 0;
 +
        var new_img = root.children().eq(img_idx);
 +
        new_img.removeClass('hiddenElement');
 +
        new_img.animate({ opacity: 1 }, { duration: fade_time });
 +
      }});
 +
    }, delay);
     return root;
     return root;
   }
   }
Line 514: Line 543:
     );
     );
     setupGroup('#intentToInventPhotos', 2, 400, {});
     setupGroup('#intentToInventPhotos', 2, 400, {});
-
     setupGroup('#labPhotos', 1, 350,
+
     var lab_photos =
 +
    //setupGroup('#labPhotos', 1, 350,
       {
       {
         _0: 'https://static.igem.org/mediawiki/igem.org/4/4c/Waterloo_lab-0.jpg',
         _0: 'https://static.igem.org/mediawiki/igem.org/4/4c/Waterloo_lab-0.jpg',
Line 531: Line 561:
         _14: 'https://static.igem.org/mediawiki/igem.org/c/ce/Waterloo_lab-14.jpg',
         _14: 'https://static.igem.org/mediawiki/igem.org/c/ce/Waterloo_lab-14.jpg',
         _15: 'https://static.igem.org/mediawiki/igem.org/0/0e/Waterloo_lab-15.jpg'
         _15: 'https://static.igem.org/mediawiki/igem.org/0/0e/Waterloo_lab-15.jpg'
-
       }
+
       };
-
     );
+
     //);
 +
    $('#labPhotos').append(createPhotoSlideshow(lab_photos, 3000, 650));
   }
   }

Revision as of 06:59, 11 August 2013

Abstract

Due to its nature as an information-encoding molecule, the use of DNA as an intercellular messaging molecule would enable more information-rich communication between populations of cells than traditional AHL-based messaging. The first demonstration of DNA messaging was published by the Endy group at Stanford University in late 2012, wherein DNA encoding instructions for expression of fluorescence and antibiotic resistance were transmitted from one bacterial population to another, carried by M13 bacteriophage particles.

Incorporation of well-established in vivo DNA modification techniques into DNA messaging will diversify and extend potential intercellular communication programs, and will enable the integration of recent developments in DNA digital logic with DNA messaging.

The goal of our project is to place on a DNA message a switch that can be flipped in receiver cells under inducible conditions, and whose state determines whether or not the DNA message is retransmitted from receiver cells to a population of secondary receiver cells. The switch consists of a promoter that can be inverted using a serine integrase, leading to transcription of different genes. It is directly inspired by the recombinase addressable data (RAD) module published by the Endy group in early 2012.

We have synthesized four such DNA switches and will soon test the ability of PhiC31 and Bxb1 serine integrases, along with the respective recombination directionality factors (RDFs), to control their states. We have also produced constructs that we will use to attempt to control the production of M13 viral particles containing a DNA message and we will test these soon. We will integrate these efforts to demonstrate our goal of incorporating digital DNA logic into DNA messaging. Through this work, we will broaden the horizons of engineered intercellular communication.

Design

Ottawa's Collaboration

Video

Results

Future Aspirations

Biobricks

  • Hpdo with no gene 8
  • Bxb1 rdf
  • Bxb1 int
  • Bxb1 switch
  • BXB1 switch flipped
  • ΦC31 rdf
  • ΦC31 int
  • ΦC31 switch
  • ΦC31 switch flipped

Switch Modelling

x y z

Population & Infection Modelling

a b c

Phage Particle Production Modelling

a b c

Intent to Invent

Vlogs

Special Project

Intent to Invent

Laboratory

Safety

This page is still in progress

Sponsors

Administrators

Lab & Design

Human Practices

Mathematical Modelling

Advisors

Graduate Student Advisors