Team:NCTU Formosa/project

From 2013.igem.org

(Difference between revisions)
(Introduction)
Line 8: Line 8:
Overall, we’ve completed our whole project of utilizing glucose to produce isobutanol and reached a production rate which is higher than recently published papers (0.8%=6.4g/L). Furthermore, we have also realized our dream of “Changing Trash into Gold” which is converting agricultural trash into isobutanol.
Overall, we’ve completed our whole project of utilizing glucose to produce isobutanol and reached a production rate which is higher than recently published papers (0.8%=6.4g/L). Furthermore, we have also realized our dream of “Changing Trash into Gold” which is converting agricultural trash into isobutanol.
 +
 +
* Start each line
 +
* with an [[Wikipedia:asterisk|asterisk]] (*).
 +
** More asterisks give deeper
 +
*** and deeper levels.
 +
* Line breaks <br />don't break levels.
 +
*** But jumping levels creates empty space.
 +
 +
# Start each line
 +
# with a [[Wikipedia:Number_sign|number sign]] (#).
 +
## More number signs give deeper
 +
### and deeper
 +
### levels.
 +
# Line breaks <br />don't break levels.
 +
### But jumping levels creates empty space.
 +
# Blank lines
===Introduction===
===Introduction===

Revision as of 18:01, 26 August 2013

Introduction

The main aim of our “E.coline” project is to generate isobutanol, a promising eco-fuel, in a productive and efficient way.To produce isobutanol, at first we use four pyruvate catalytic enzyme genes: alsS, ilvC, ilvD, kivD all. We then designed a temperature control system to allow E.coli to produce optimum isobutanol before being poisoned by isobutyaldehyde. According to our data(Figure 8), our temperature control system had been proven to work successfully. Furthermore, in order to produce isobutanol more efficiently, we combined zinc fingers and our enzymes together and put the fusion proteins in catalytic pathway order, thus the isobutanol conversion process can be accelerated. Besides, our cellulose test result has proven that in our project we are truly able to convert agricultural trash into the precious isobutanol.

Overall, we’ve completed our whole project of utilizing glucose to produce isobutanol and reached a production rate which is higher than recently published papers (0.8%=6.4g/L). Furthermore, we have also realized our dream of “Changing Trash into Gold” which is converting agricultural trash into isobutanol.

  • Start each line
  • with an asterisk (*).
    • More asterisks give deeper
      • and deeper levels.
  • Line breaks
    don't break levels.
      • But jumping levels creates empty space.
  1. Start each line
  2. with a number sign (#).
    1. More number signs give deeper
      1. and deeper
      2. levels.
  3. Line breaks
    don't break levels.
      1. But jumping levels creates empty space.
  4. Blank lines

Introduction

http://fitisafeministissue.files.wordpress.com/2013/03/orange-juice.jpg The main aim of our “E.coline” project is to generate isobutanol, a promising eco-fuel, in a productive and efficient way.To produce isobutanol, at first we use four pyruvate catalytic enzyme genes: alsS, ilvC, ilvD, kivD all. We then designed a temperature control system to allow E.coli to produce optimum isobutanol before being poisoned by isobutyaldehyde. According to our data(Figure 8), our temperature control system had been proven to work successfully. Furthermore, in order to produce isobutanol more efficiently, we combined zinc fingers and our enzymes together and put the fusion proteins in catalytic pathway order, thus the isobutanol conversion process can be accelerated. Besides, our cellulose test result has proven that in our project we are truly able to convert agricultural trash into the precious isobutanol.

Overall, we’ve completed our whole project of utilizing glucose to produce isobutanol and reached a production rate which is higher than recently published papers (0.8%=6.4g/L). Furthermore, we have also realized our dream of “Changing Trash into Gold” which is converting agricultural trash into isobutanol.