Team:NCTU Formosa/project

From 2013.igem.org

(Difference between revisions)
Line 2: Line 2:
{{:Team:NCTU Formosa/source/header-project}}
{{:Team:NCTU Formosa/source/header-project}}
{{:Team:NCTU Formosa/source/header}}
{{:Team:NCTU Formosa/source/header}}
-
{{:Team:NCTU Formosa/source/card}}
+
<html>
 +
<div id="main-wrapper">
 +
  <div id="main">
 +
      <div id="cover">
 +
<h1 id="cover-title">title</h1>
 +
<p>content</p>
 +
      </div>
 +
      <div id="content-wrapper">
 +
      <div id="realcontent"><div id="crw"><div id="cr">
 +
<ul class="cont">
 +
<li><div class="card">
 +
<p class="card-title">Introduction</p>
 +
<p>The main aim of our “E.coline” project is to generate isobutanol, a promising eco-fuel, in a productive and efficient way.To produce isobutanol, at first we use four pyruvate catalytic enzyme genes: alsS, ilvC, ilvD, kivD all. We then designed a temperature control system to allow E.coli to produce optimum isobutanol before being poisoned by isobutyaldehyde. According to our data(Figure 8), our temperature control system had been proven to work successfully. Furthermore, in order to produce isobutanol more efficiently, we combined zinc fingers and our enzymes together and put the fusion proteins in catalytic pathway order, thus the isobutanol conversion process can be accelerated. Besides, our cellulose test result has proven that in our project we are truly able to convert agricultural trash into the precious isobutanol.
-
<div class="li"><div class="card">
+
Overall, we’ve completed our whole project of utilizing glucose to produce isobutanol and reached a production rate which is higher than recently published papers (0.8%=6.4g/L). Furthermore, we have also realized our dream of “Changing Trash into Gold” which is converting agricultural trash into isobutanol.</p>
-
===Introduction===
+
<p class="url">[http://30cm.me/igemc See the page]</p>
-
The main aim of our “E.coline” project is to generate isobutanol, a promising eco-fuel, in a productive and efficient way.To produce isobutanol, at first we use four pyruvate catalytic enzyme genes: alsS, ilvC, ilvD, kivD all. We then designed a temperature control system to allow E.coli to produce optimum isobutanol before being poisoned by isobutyaldehyde. According to our data(Figure 8), our temperature control system had been proven to work successfully. Furthermore, in order to produce isobutanol more efficiently, we combined zinc fingers and our enzymes together and put the fusion proteins in catalytic pathway order, thus the isobutanol conversion process can be accelerated. Besides, our cellulose test result has proven that in our project we are truly able to convert agricultural trash into the precious isobutanol.
+
</div>
 +
</li>
 +
<li><div class="card">
 +
<p class="card-title">Introduction</p>
 +
<p>The main aim of our “E.coline” project is to generate isobutanol, a promising eco-fuel, in a productive and efficient way.To produce isobutanol, at first we use four pyruvate catalytic enzyme genes: alsS, ilvC, ilvD, kivD all. We then designed a temperature control system to allow E.coli to produce optimum isobutanol before being poisoned by isobutyaldehyde. According to our data(Figure 8), our temperature control system had been proven to work successfully. Furthermore, in order to produce isobutanol more efficiently, we combined zinc fingers and our enzymes together and put the fusion proteins in catalytic pathway order, thus the isobutanol conversion process can be accelerated. Besides, our cellulose test result has proven that in our project we are truly able to convert agricultural trash into the precious isobutanol.
-
Overall, we’ve completed our whole project of utilizing glucose to produce isobutanol and reached a production rate which is higher than recently published papers (0.8%=6.4g/L). Furthermore, we have also realized our dream of “Changing Trash into Gold” which is converting agricultural trash into isobutanol.
+
Overall, we’ve completed our whole project of utilizing glucose to produce isobutanol and reached a production rate which is higher than recently published papers (0.8%=6.4g/L). Furthermore, we have also realized our dream of “Changing Trash into Gold” which is converting agricultural trash into isobutanol.</p>
-
ates empty space.
+
<p class="url"><a href="http://30cm.me/igem" target="_blank">See the page</a></p>
 +
</div>
 +
</li>
 +
<li><div class="card">
 +
<p class="card-title">Introduction</p>
 +
<img src="http://fitisafeministissue.files.wordpress.com/2013/03/orange-juice.jpg" class="full" />
 +
<p>The main aim of our “E.coline” project is to generate isobutanol, a promising eco-fuel, in a productive and efficient way.To produce isobutanol, at first we use four pyruvate catalytic enzyme genes: alsS, ilvC, ilvD, kivD all. We then designed a temperature control system to allow E.coli to produce optimum isobutanol before being poisoned by isobutyaldehyde. According to our data(Figure 8), our temperature control system had been proven to work successfully. Furthermore, in order to produce isobutanol more efficiently, we combined zinc fingers and our enzymes together and put the fusion proteins in catalytic pathway order, thus the isobutanol conversion process can be accelerated. Besides, our cellulose test result has proven that in our project we are truly able to convert agricultural trash into the precious isobutanol.
-
</div></div>
+
Overall, we’ve completed our whole project of utilizing glucose to produce isobutanol and reached a production rate which is higher than recently published papers (0.8%=6.4g/L). Furthermore, we have also realized our dream of “Changing Trash into Gold” which is converting agricultural trash into isobutanol.</p>
-
 
+
<p class="url"><a href="http://30cm.me/igem" target="_blank">See the page</a></p>
-
<div class="li"><div class="card">
+
</div>
-
===Introduction===
+
</li>
-
http://fitisafeministissue.files.wordpress.com/2013/03/orange-juice.jpg
+
</ul></div></div>
-
The main aim of our “E.coline” project is to generate isobutanol, a promising eco-fuel, in a productive and efficient way.To produce isobutanol, at first we use four pyruvate catalytic enzyme genes: alsS, ilvC, ilvD, kivD all. We then designed a temperature control system to allow E.coli to produce optimum isobutanol before being poisoned by isobutyaldehyde. According to our data(Figure 8), our temperature control system had been proven to work successfully. Furthermore, in order to produce isobutanol more efficiently, we combined zinc fingers and our enzymes together and put the fusion proteins in catalytic pathway order, thus the isobutanol conversion process can be accelerated. Besides, our cellulose test result has proven that in our project we are truly able to convert agricultural trash into the precious isobutanol.
+
<div id="cl">
-
 
+
<ul class="side">
-
Overall, we’ve completed our whole project of utilizing glucose to produce isobutanol and reached a production rate which is higher than recently published papers (0.8%=6.4g/L). Furthermore, we have also realized our dream of “Changing Trash into Gold” which is converting agricultural trash into isobutanol.
+
<li><div class="card">
-
 
+
<p class="card-title">子目錄暫定處</p>
-
</div></div>
+
<p>blablabla</p>
-
 
+
</div></li>
-
{{:Team:NCTU Formosa/source/card-end}}
+
</ul></div>
 +
</div>
 +
</div>
 +
  </div>
 +
</div>
 +
<div id="footer-wrapper">
 +
  <div id="footer"> <div id="footer-text">
 +
    <p>Copyright © 2013 NCTU_Formosa</p>
 +
    <p class="author">Website designed by Calvin Hue.</p>
 +
    </div> </div>
 +
</div>

Revision as of 18:17, 26 August 2013

title

content

  • Introduction

    The main aim of our “E.coline” project is to generate isobutanol, a promising eco-fuel, in a productive and efficient way.To produce isobutanol, at first we use four pyruvate catalytic enzyme genes: alsS, ilvC, ilvD, kivD all. We then designed a temperature control system to allow E.coli to produce optimum isobutanol before being poisoned by isobutyaldehyde. According to our data(Figure 8), our temperature control system had been proven to work successfully. Furthermore, in order to produce isobutanol more efficiently, we combined zinc fingers and our enzymes together and put the fusion proteins in catalytic pathway order, thus the isobutanol conversion process can be accelerated. Besides, our cellulose test result has proven that in our project we are truly able to convert agricultural trash into the precious isobutanol. Overall, we’ve completed our whole project of utilizing glucose to produce isobutanol and reached a production rate which is higher than recently published papers (0.8%=6.4g/L). Furthermore, we have also realized our dream of “Changing Trash into Gold” which is converting agricultural trash into isobutanol.

    [http://30cm.me/igemc See the page]

  • Introduction

    The main aim of our “E.coline” project is to generate isobutanol, a promising eco-fuel, in a productive and efficient way.To produce isobutanol, at first we use four pyruvate catalytic enzyme genes: alsS, ilvC, ilvD, kivD all. We then designed a temperature control system to allow E.coli to produce optimum isobutanol before being poisoned by isobutyaldehyde. According to our data(Figure 8), our temperature control system had been proven to work successfully. Furthermore, in order to produce isobutanol more efficiently, we combined zinc fingers and our enzymes together and put the fusion proteins in catalytic pathway order, thus the isobutanol conversion process can be accelerated. Besides, our cellulose test result has proven that in our project we are truly able to convert agricultural trash into the precious isobutanol. Overall, we’ve completed our whole project of utilizing glucose to produce isobutanol and reached a production rate which is higher than recently published papers (0.8%=6.4g/L). Furthermore, we have also realized our dream of “Changing Trash into Gold” which is converting agricultural trash into isobutanol.

    See the page

  • Introduction

    The main aim of our “E.coline” project is to generate isobutanol, a promising eco-fuel, in a productive and efficient way.To produce isobutanol, at first we use four pyruvate catalytic enzyme genes: alsS, ilvC, ilvD, kivD all. We then designed a temperature control system to allow E.coli to produce optimum isobutanol before being poisoned by isobutyaldehyde. According to our data(Figure 8), our temperature control system had been proven to work successfully. Furthermore, in order to produce isobutanol more efficiently, we combined zinc fingers and our enzymes together and put the fusion proteins in catalytic pathway order, thus the isobutanol conversion process can be accelerated. Besides, our cellulose test result has proven that in our project we are truly able to convert agricultural trash into the precious isobutanol. Overall, we’ve completed our whole project of utilizing glucose to produce isobutanol and reached a production rate which is higher than recently published papers (0.8%=6.4g/L). Furthermore, we have also realized our dream of “Changing Trash into Gold” which is converting agricultural trash into isobutanol.

    See the page

  • 子目錄暫定處

    blablabla