Team:XMU-China/Content2

From 2013.igem.org

(Difference between revisions)
Line 28: Line 28:
<!-- START WRAPPER SECTION -->
<!-- START WRAPPER SECTION -->
<style>
<style>
-
#wrapper {background:#fff99}
+
#wrapper {background:#fff999}
</style>
</style>
<div id="wrapper">
<div id="wrapper">

Revision as of 11:25, 15 September 2013

LinkUp - Multipurpose HTML Template

XMU-iGEM 2013

Biome

First

By constructing robust circuits in E.coli, we want to build a gene network capable of synchronizing genetic oscillations in multiple levels. Cells can be synchronized at the colony level via quorum sensing, and a gas-phase redox will be signaling (mainly H2O2) between colonies simultaneously. Two scales of coupling ensured extremely consistent oscillations.

XMU-iGEM 2013

Biome

First

By constructing robust circuits in E.coli, we want to build a gene network capable of synchronizing genetic oscillations in multiple levels. Cells can be synchronized at the colony level via quorum sensing, and a gas-phase redox will be signaling (mainly H2O2) between colonies simultaneously. Two scales of coupling ensured extremely consistent oscillations.

XMU-iGEM 2013

Biome

First

By constructing robust circuits in E.coli, we want to build a gene network capable of synchronizing genetic oscillations in multiple levels. Cells can be synchronized at the colony level via quorum sensing, and a gas-phase redox will be signaling (mainly H2O2) between colonies simultaneously. Two scales of coupling ensured extremely consistent oscillations.

XMU-iGEM 2013

Biome

First

By constructing robust circuits in E.coli, we want to build a gene network capable of synchronizing genetic oscillations in multiple levels. Cells can be synchronized at the colony level via quorum sensing, and a gas-phase redox will be signaling (mainly H2O2) between colonies simultaneously. Two scales of coupling ensured extremely consistent oscillations.