Team:Stanford-Brown

From 2013.igem.org

(Difference between revisions)
Line 75: Line 75:
         <td>
         <td>
           <div style="width: 580px; margin-top:0px;">
           <div style="width: 580px; margin-top:0px;">
-
             <span id="abs-title" style="margin-top:-30px;"><a href="/Team:Stanford-Brown/AboutUs/Recruiting">COME JOIN US IN 2013! CLICK HERE!</a></span>
+
             <span id="abs-title" style="margin-top:-30px;"><a href="/Team:Stanford-Brown/AboutUs/Recruiting">FIND OUT MORE ABOUT THE 2014 TEAM!</a></span>
             <span id="abs-title">ABSTRACT</span>
             <span id="abs-title">ABSTRACT</span>
             <span style="float: left;">
             <span style="float: left;">
               <p id="abs-text">
               <p id="abs-text">
-
                 Astrobiology revolves around three central questions: "Where do we come from?", "Where are we going?", and "Are we alone?"  The Stanford-Brown iGEM team explored synthetic biology's untapped potential to address these questions. To approach the second question, the Hell Cell subgroup developed BioBricks that allow a cell to survive harsh extraterrestrial conditions. Such a toolset could create a space-ready synthetic organism to perform useful functions off-world. For example, the Biomining branch attempted to engineer bacteria to recycle used electronics by degenerating silica and extracting metal ions <i>in situ</i>. The Venus Life subproject grappled with the third key astrobiological question by exploring Carl Sagan's theory that life could exist in Venusian clouds. To this end, Venus Life designed a cell-cycle reporter to test for growth in aerosol within an adapted Millikan apparatus. Through this triad of projects, Stanford-Brown iGEM aims to illuminate synthetic biology's value as a tool for astrobiology.
+
                 NEW ABSTRACT
               </p>
               </p>
             </span>
             </span>
Line 89: Line 89:
               <ul>
               <ul>
                 <li> <a href="#"> Introduced Synthetic Biology as a tool for Astrobiology </a></li>
                 <li> <a href="#"> Introduced Synthetic Biology as a tool for Astrobiology </a></li>
-
                 <li> <a href="#">Top 16 at iGEM World Competition </a></li>
+
                 <li> <a href="#">Stanford REU Poster Fair </a></li>
-
                 <li> <a href="#">Best Natural BioBrick at Americas West Regionals </a></li>
+
                 <li> <a href="#">Presentation at Cal Academy of Sciences </a></li>
-
                 <li> <a href="/Team:Stanford-Brown/HellCell/Introduction">Isolated parts that improve resistance to extreme conditions in <i>Escherichia coli</i></a></li>
+
                 <li> <a href="/Team:Stanford-Brown/HellCell/Introduction">BioWires -- create conductive DNA</a></li>
-
                 <li> <a href="/Team:Stanford-Brown/VenusLife/Biosensing">Developed two cell-cycle dependent promoters for use as remote biosensors </a></li>
+
                 <li> <a href="/Team:Stanford-Brown/VenusLife/Biosensing">CRISPR </a></li>
-
                 <li> <a href="/Team:Stanford-Brown/Biomining/Harvesting">Improved part BBa_K133038 by standardizing ligation into flagella and engineered the <i>E. coli</i> flagellum to extract metals <i>in situ</i></a></li>
+
                 <li> <a href="/Team:Stanford-Brown/Biomining/Harvesting">De-Extinction </a></li>
-
                 <li> <a href="/Team:Stanford-Brown/VenusLife/Modeling">Modeled bacterial growth in the Venusian atmosphere </a></li>
+
                 <li> <a href="/Team:Stanford-Brown/VenusLife/Modeling">EuCROPIS </a></li>
-
                 <li> <a href="/Team:Stanford-Brown/HumanPractices/Introduction">Wrote Guides to Bioethics and Gene Patent Law </a></li>
+
                 <li> <a href="/Team:Stanford-Brown/HumanPractices/Introduction">Paper to optimize lab work </a></li>
                 <li> <a href="http://www.wired.com/wiredscience/2012/08/engineering-bacteria-for-mars/">Featured in Wired Magazine and Cal Academy of Sciences </a></li>
                 <li> <a href="http://www.wired.com/wiredscience/2012/08/engineering-bacteria-for-mars/">Featured in Wired Magazine and Cal Academy of Sciences </a></li>
                 <li> <a href="http://www.facebook.com/IgemMemes">Created and maintained iGEM memes </a></li>
                 <li> <a href="http://www.facebook.com/IgemMemes">Created and maintained iGEM memes </a></li>

Revision as of 00:42, 20 September 2013

Surviving in the harsh conditions of space is not easy for an organism. Extreme temperatures, desiccation, and pressures are only some of the problems an intrepid bacterium might face on its journey. We successfully strengthened our organisms with some of these abilities––desiccation and extreme basicity--in preparation for a journey into space!

The surface of Venus is a harsh and unforgiving environment. However, research suggests that there may be layers of its atmosphere that are more temperate. To prepare for tests to see if organisms can survive in the clouds of Venus, we successfully developed cell-cycle dependent reporters to tell us when our cells are happy and dividing!

If we are to colonize space, we are going to need rare metals for materials. But bringing heavy duty equipment for traditional mining is not very viable at all! Bacteria and other biological organisms can be used to extract rare metals from sediment. Bacteria could mine asteroids and do all the work for us, and we equipped their flagella with the tools to do so!