Team:BIT/project AC

From 2013.igem.org

(Difference between revisions)
Line 286: Line 286:
         </tr>
         </tr>
    <tr>
    <tr>
-
      <td class="t2">&nbsp;&nbsp;&nbsp;&nbsp;Sometimes we need to enhance the output signal to different degrees. In other words, we want to control the magnification. A “controller” is designed to solve this problem. We inserted a lacO operator between the DNA of T7 RNA polymerase and green fluorescent protein, and added a lacI biobrick in the system. When there is low concentration of IPTG, the lacI will close the lacO to inhibit the expression of gfp DNA. When we add IPTG to the sample, the lacI will be combined with IPTG, and the inhibition of the expression of the downstream DNA will be inhibited. Thus we can control the magnification by controlling the concentration of IPTG.</td>
+
      <td class="t2">&nbsp;&nbsp;&nbsp;&nbsp;Sometimes we need to enhance the output signal to different degrees. In other words, we want to control the magnification. A “controller” is designed to solve this problem. We inserted a lacO operator between the DNA of T7 RNA polymerase and green fluorescent protein, and added a <i>lacI</i> biobrick in the system. When there is low concentration of IPTG, the <i>lacI</i> will close the <i>lacO</i> to inhibit the expression of gfp DNA. When we add IPTG to the sample, the <i>lacI</i> will be combined with IPTG, and the inhibition of the expression of the downstream DNA will be inhibited. Thus we can control the magnification by controlling the concentration of IPTG.</td>
         </tr>
         </tr>
    <tr>
    <tr>
Line 292: Line 292:
         </tr>
         </tr>
         <tr>
         <tr>
-
      <td class="t2">&nbsp;&nbsp;&nbsp;&nbsp;Here we introduced a new part which contains lacI and lacO in the system. The gene of lacI is always expressing, which inhibits the expression of lacO. In this case, even if there is an input signal, no egfp will be expressed.</td>
+
      <td class="t2">&nbsp;&nbsp;&nbsp;&nbsp;Here we introduced a new part which contains <i>lacI</i> and <i>lacO</i> in the system. The gene of <i>lacI</i> is always expressing, which inhibits the expression of <i>lacO</i>. In this case, even if there is an input signal, no egfp will be expressed.</td>
         </tr>
         </tr>
    <tr>
    <tr>
Line 298: Line 298:
         </tr>
         </tr>
         <tr>
         <tr>
-
      <td class="t2">&nbsp;&nbsp;&nbsp;&nbsp;If we put IPTG in the environment as an inducer, the lacI protein will combine to the IPTG molecules and thus the inhibition will be ceased. As a result, the lacO will be activated, which will lead to the expression of downstream egfp.</td>
+
      <td class="t2">&nbsp;&nbsp;&nbsp;&nbsp;If we put IPTG in the environment as an inducer, the <i>lacI</i> protein will combine to the IPTG molecules and thus the inhibition will be ceased. As a result, the <i>lacO</i> will be activated, which will lead to the expression of downstream egfp.</td>
         </tr>
         </tr>
    <tr>
    <tr>
Line 307: Line 307:
         </tr>
         </tr>
         <tr>
         <tr>
-
      <td class="t2">&nbsp;&nbsp;&nbsp;&nbsp;If we put IPTG in the environment as an inducer, the lacI protein will combine to the IPTG molecules and thus the inhibition will be ceased. As a result, the lacO will be activated, which will lead to the expression of downstream egfp.</td>
+
      <td class="t2">&nbsp;&nbsp;&nbsp;&nbsp;If we put IPTG in the environment as an inducer, the <i>lacI</i> protein will combine to the IPTG molecules and thus the inhibition will be ceased. As a result, the <i>lacO</i> will be activated, which will lead to the expression of downstream egfp.</td>
         </tr>
         </tr>
         <tr>
         <tr>
Line 313: Line 313:
         </tr>
         </tr>
         <tr>
         <tr>
-
               <td class="t2">&nbsp;&nbsp;&nbsp;&nbsp;Sometimes we would like to control the magnification. This could be realized by regulating the concentration of IPTG. The higher the concentration of IPTG is, the more lacI will be combined. As a result, the expression of downstream egfp will be enhanced.</td>
+
               <td class="t2">&nbsp;&nbsp;&nbsp;&nbsp;Sometimes we would like to control the magnification. This could be realized by regulating the concentration of IPTG. The higher the concentration of IPTG is, the more <i>lacI</i> will be combined. As a result, the expression of downstream egfp will be enhanced.</td>
         </tr>
         </tr>
         <tr>
         <tr>

Revision as of 15:04, 22 September 2013

iGEM BIT

     
  Beijing Institute of Technology | 5 South Zhongguancun Street, Haidian DistrictBeijing, China 100081  
  E-mail: yifei0114@bit.edu.cn  
  Beijing Institute of Technology © 2013 Privacy Policy