Team:Newcastle
From 2013.igem.org
Line 51: | Line 51: | ||
<a href="https://2013.igem.org/Team:Newcastle/Parts/l_form_switch"> | <a href="https://2013.igem.org/Team:Newcastle/Parts/l_form_switch"> | ||
<img src="https://static.igem.org/mediawiki/2013/7/72/L-form_Switch.png" /> | <img src="https://static.igem.org/mediawiki/2013/7/72/L-form_Switch.png" /> | ||
+ | </a> | ||
</div> | </div> | ||
</div> | </div> | ||
Line 60: | Line 61: | ||
<a href="https://2013.igem.org/Team:Newcastle/Project/shuffling_endosymbiosis"> | <a href="https://2013.igem.org/Team:Newcastle/Project/shuffling_endosymbiosis"> | ||
<img src="https://static.igem.org/mediawiki/2013/a/a4/Genome_shuffling.png" /> | <img src="https://static.igem.org/mediawiki/2013/a/a4/Genome_shuffling.png" /> | ||
+ | </a> | ||
</div> | </div> | ||
</div> | </div> | ||
Line 70: | Line 72: | ||
<a href="https://2013.igem.org/Team:Newcastle/Project/plants"> | <a href="https://2013.igem.org/Team:Newcastle/Project/plants"> | ||
<img src="https://static.igem.org/mediawiki/2013/4/44/L-form_in_plant.png" /> | <img src="https://static.igem.org/mediawiki/2013/4/44/L-form_in_plant.png" /> | ||
+ | </a> | ||
</div> | </div> | ||
</div> | </div> | ||
Line 79: | Line 82: | ||
<a href="https://2013.igem.org/Team:Newcastle/Project/shape_shifting"> | <a href="https://2013.igem.org/Team:Newcastle/Project/shape_shifting"> | ||
<img src="https://static.igem.org/mediawiki/2013/d/d5/Shape_Shifting.png" /> | <img src="https://static.igem.org/mediawiki/2013/d/d5/Shape_Shifting.png" /> | ||
+ | </a> | ||
</div> | </div> | ||
</div> | </div> |
Revision as of 07:30, 27 September 2013
Our Project
Our project focuses on the creation and applications of L-forms: bacteria that grow without a cell wall. We propose L-forms as a novel chassis for synthetic biology. Our principle BioBrick switches Bacillus subtilis cells between rod-shape and L-form.
We will use microfluidics to attempt genome shuffling and shape-shifting. It is easier to fuse bacteria without cell walls. Fusion will cause genetic recombination, allowing directed evolution. We will put L-forms in moulds to observe if they adopt different shapes.
L-forms exist symbiotically in plants, which we will visualise by growing GFP labelled L-forms inside seedlings. L-forms could be engineered to supply nutrients to their host. L-forms are osmotically sensitive, giving biosecurity that they lyse if they escape from the plant.
As outreach we reflected upon our project's implications with stakeholders, created a BioGame for the public and developed a workshop for those new to modelling. Finally, we evaluated the relationship between synthetic biology and architecture.