Team:Clemson/Ethics
From 2013.igem.org
(Difference between revisions)
(→Ethical Discussion) |
|||
Line 6: | Line 6: | ||
Looking at the big picture, our goal of producing an efficient biosensor for the optimization of pathogen detection in industrial processes has many potential benefits and detriments to industry and the environment. Our project involved the creation of two different bacterial systems, one of which we simplified into a third for standardization. The initial project was to create what we call a Universal Self Amplifying (USA) biosensor. The idea of which is to use a cheap, effective bacteria to locate a specific pathogenic signal, amplify it to trigger other USA biosensors, and rapidly produce a visible response. For proof of concept we needed a model pathogen to activate our USA biosensor. By combining a variety of gene sequences we developed the BBa_K1090000 BioBrick, an AHL signal producing system with an red florescent protein (RFP) reporter gene, and put this plasmid into E. coli. One of our controls for the biosensor construct is our Universal biosensor (UB). The UB sequence contains all of the USA biosensor genes except for those that confer the AHL signal amplification. Although we did not submit BioBricks for the UB and USA biosensor, both have been completed and tested. We will save the discussion of the results for our “Project” section. Here, we would like to enumerate some of the implications our system could have upon the environment, safety, ethics, and ownership. | Looking at the big picture, our goal of producing an efficient biosensor for the optimization of pathogen detection in industrial processes has many potential benefits and detriments to industry and the environment. Our project involved the creation of two different bacterial systems, one of which we simplified into a third for standardization. The initial project was to create what we call a Universal Self Amplifying (USA) biosensor. The idea of which is to use a cheap, effective bacteria to locate a specific pathogenic signal, amplify it to trigger other USA biosensors, and rapidly produce a visible response. For proof of concept we needed a model pathogen to activate our USA biosensor. By combining a variety of gene sequences we developed the BBa_K1090000 BioBrick, an AHL signal producing system with an red florescent protein (RFP) reporter gene, and put this plasmid into E. coli. One of our controls for the biosensor construct is our Universal biosensor (UB). The UB sequence contains all of the USA biosensor genes except for those that confer the AHL signal amplification. Although we did not submit BioBricks for the UB and USA biosensor, both have been completed and tested. We will save the discussion of the results for our “Project” section. Here, we would like to enumerate some of the implications our system could have upon the environment, safety, ethics, and ownership. | ||
<br> | <br> | ||
+ | |||
Our specific project ideally would remain in the laboratory setting, thus we do not have any mechanisms to limit bacterial growth or reproduction, such as a kill switch. The use of genetically modified organisms (GMOs) in nature has been a concern both societally and scientifically for quite some time. Last year our project dealt with bioremediation using a synthetic tri-bacteria system; for this reason, we included a detailed ethics section regarding synthetic biology in the environment. If you would like to learn more about this, please follow the following link: https://2012.igem.org/Team:Clemson/Ethics. Even if our project entered into the environment, the synthetic genes occur naturally and produce the quorum sensing chemical N-Acyl Homoserine Lactones (AHL), which would at worst attract specific bacteria to one another. As all of our system’s use will be with samples in a controlled laboratory environment, there is no real environmental threat for our project this year. | Our specific project ideally would remain in the laboratory setting, thus we do not have any mechanisms to limit bacterial growth or reproduction, such as a kill switch. The use of genetically modified organisms (GMOs) in nature has been a concern both societally and scientifically for quite some time. Last year our project dealt with bioremediation using a synthetic tri-bacteria system; for this reason, we included a detailed ethics section regarding synthetic biology in the environment. If you would like to learn more about this, please follow the following link: https://2012.igem.org/Team:Clemson/Ethics. Even if our project entered into the environment, the synthetic genes occur naturally and produce the quorum sensing chemical N-Acyl Homoserine Lactones (AHL), which would at worst attract specific bacteria to one another. As all of our system’s use will be with samples in a controlled laboratory environment, there is no real environmental threat for our project this year. | ||
+ | |||
<br> | <br> | ||
The production of a pathogenic biosensor is in itself a positive step towards safety in such things as industrial food production and water purification. Working with pathogens always carries an inherent risk to those in contact with the organism and requires proper techniques to prevent their spread in the laboratory. However, we worked with a non-pathogenic model of E. coli 0157, and integrated a signal (AHL production) into the bacteria to standardize the process. The USA biosensor would ideally serve to increase the safety of industrial processes and product production by providing an inexpensive, rapid, and precise method of detecting specific pathogens. The major effect this system has upon safety is by improving its effectiveness and affordability in industry. | The production of a pathogenic biosensor is in itself a positive step towards safety in such things as industrial food production and water purification. Working with pathogens always carries an inherent risk to those in contact with the organism and requires proper techniques to prevent their spread in the laboratory. However, we worked with a non-pathogenic model of E. coli 0157, and integrated a signal (AHL production) into the bacteria to standardize the process. The USA biosensor would ideally serve to increase the safety of industrial processes and product production by providing an inexpensive, rapid, and precise method of detecting specific pathogens. The major effect this system has upon safety is by improving its effectiveness and affordability in industry. |
Revision as of 19:39, 27 September 2013
Ethical Discussion