Team:Grenoble-EMSE-LSU/Project/Modelling

From 2013.igem.org

(Difference between revisions)
Line 88: Line 88:
<br>
<br>
-
<h3>Analytic resolution</h3>
+
<h3>Analytical Solution</h3>
<p> This simple model can be partially solved, for $C(t)$ or $I(t)$ constant for example : </p>
<p> This simple model can be partially solved, for $C(t)$ or $I(t)$ constant for example : </p>
<br>
<br>
-
<p>If we say : $\forall t, C(t)=C_0$, we have :</p>
+
<p>If we $C$ is constant, $\forall t, C(t)=C_0$, we have :</p>
<p>
<p>
$
$
Line 108: Line 108:
<br>
<br>
<p> then $I(t)=\frac{rC_0}{kK(t)}$ should give a constant concentration of living cell.</p>
<p> then $I(t)=\frac{rC_0}{kK(t)}$ should give a constant concentration of living cell.</p>
 +
<p> For time long enough, the light intensity that stabilizes the concentration of living cells is  $I_0=\frac{r^2}{ak-rb}$.</p>
<br>
<br>
<br>
<br>
-
<p> But if we say : $\forall t, I(t)=I_0$, we need another variable to solve easily our equation : </p>
+
<p> But if we assume that $I$ is constant, $\forall t, I(t)=I_0$, we need another variable to solve easily our equation : </p>
<p> We define : $Y=\frac{K}{C}$ the amount of KillerRed per bacteria.</p>
<p> We define : $Y=\frac{K}{C}$ the amount of KillerRed per bacteria.</p>
<p> $\frac{dY}{dt}=\frac{d}{dt}\left(\frac{K}{C}\right)=a-(bI_0+r)Y$</p>
<p> $\frac{dY}{dt}=\frac{d}{dt}\left(\frac{K}{C}\right)=a-(bI_0+r)Y$</p>

Revision as of 17:33, 30 September 2013

Grenoble-EMSE-LSU, iGEM


Grenoble-EMSE-LSU, iGEM

Retrieved from "http://2013.igem.org/Team:Grenoble-EMSE-LSU/Project/Modelling"