Team:Grenoble-EMSE-LSU/Project/Biology
From 2013.igem.org
Line 68: | Line 68: | ||
<li> | <li> | ||
- | <h2> | + | <h2>Experimental Protocol for KillerRed Characterization</h2> |
<h3>Choice of the <em>E. coli</em> strain</h3> | <h3>Choice of the <em>E. coli</em> strain</h3> | ||
- | <p>We first decided to characterize KR in BW25113 bacteria, a wild-type (WT) strain derived from <em>E. coli</em> K12. Cells were successfully transformed with pQE30::KR and were shown to express the protein in response to IPTG induction. However, results of OD610 monitoring showed that BW25113 cells transformed with pQE30::KR grew really slowly (r = 0.08 h-1). One hypothesis | + | <p>We first decided to characterize KR in BW25113 bacteria, a wild-type (WT) strain derived from <em>E. coli</em> K12. Cells were successfully transformed with pQE30::KR and were shown to express the protein in response to IPTG induction. However, results of OD610 monitoring showed that BW25113 cells transformed with pQE30::KR grew really slowly (r = 0.08 h-1) as compared to WT cells (r = 0.77 h-1). One hypothesis was that repression of the pLac promoter by the endogeneous LacI repressor was not sufficient for preventing the expression of KR, a protein that could have affected cell growth even at low light levels.<br><br> |
- | We thus decided to switch to M15 cells (Qiagen), a commercial strain in which the lacI repressor is expressed at high levels. M15 cells did express the KR protein in response to IPTG addition and displayed a faster growth rate than the BW25113 cells transformed with pQE30::KR ( | + | We thus decided to switch to M15 cells (Qiagen), a commercial strain in which the lacI repressor is expressed at high levels from plasmid pREP4. M15 cells did express the KR protein in response to IPTG addition and displayed a faster growth rate than the BW25113 cells transformed with pQE30::KR (Fig. 2). For this reason, M15 cells were chosen to characterize KR.<br><br></p> |
<p align="center"><img src="https://static.igem.org/mediawiki/2013/f/fa/Strain_choice.png" alt="strain choice" height="350px"></p> | <p align="center"><img src="https://static.igem.org/mediawiki/2013/f/fa/Strain_choice.png" alt="strain choice" height="350px"></p> | ||
<p id="legend">Figure 2.<br>Comparison between the growth of pQE30::KR-containing BW25113 and M15 cells (without IPTG and in the dark). Cells were pre cultured ON in LB medium, supplemented with antibiotics. They were further re suspended in M9 medium, supplemented with antibiotics at OD610 = 0.1. OD610 was subsequently monitored in a 96-well plate for 600 min, using the Tristar LB941 microplate reader (Tristar, Bad Wildbad, Germany) available in the lab. Error bars represent the standard errors of 4 independent measurements.</p> | <p id="legend">Figure 2.<br>Comparison between the growth of pQE30::KR-containing BW25113 and M15 cells (without IPTG and in the dark). Cells were pre cultured ON in LB medium, supplemented with antibiotics. They were further re suspended in M9 medium, supplemented with antibiotics at OD610 = 0.1. OD610 was subsequently monitored in a 96-well plate for 600 min, using the Tristar LB941 microplate reader (Tristar, Bad Wildbad, Germany) available in the lab. Error bars represent the standard errors of 4 independent measurements.</p> | ||
Line 78: | Line 78: | ||
<h4>Experimental setup</h4> | <h4>Experimental setup</h4> | ||
<p>For characterizing the effects of KillerRed on <em>E. coli</em> viability in different light conditions, we decided to focus on 3 kinetic variables: KR fluorescence, OD610 and colony forming units.<br><br> | <p>For characterizing the effects of KillerRed on <em>E. coli</em> viability in different light conditions, we decided to focus on 3 kinetic variables: KR fluorescence, OD610 and colony forming units.<br><br> | ||
- | First of all, KR fluorescence can be used as an indicator of the level of expression of the protein in our cell | + | First of all, KR fluorescence can be used as an indicator of the level of expression of the protein in our cell culture. Then, optical density (OD610) provides real-time information on the biomass of the system. However, it cannot be used to distinguish living and non-living cells. This is the reason why the number of colonies growing on agar plates was considered to be able to quantify live cells with an independent technique.<br><br> |
- | Since the spectrophotometer available in the lab was not suitable for illuminating cell samples for extended periods of time, we decided to perform kinetics in 100 mL | + | Since the spectrophotometer available in the lab was not suitable for illuminating cell samples for extended periods of time, we decided to perform kinetics in 100 mL Erlenmeyer flasks, incubated at 37°C, 200 rpm. A LED light source, interfaced to a computer via a microcontroller, was placed into the incubator for illuminating cell samples. A customized software enabled us to tightly modulate the intensity of the light emitted by the source.<br><br> |
- | During most of the | + | During most of the kinetic experiments, 800 µL of medium were pipetted every 30-60 min. OD610 measurements were performed using a GENESYS 6 spectrophotometer (Thermo Scientific, Waltham, MA, USA) whereas fluorescence was measured with a Tristar LB941 microplate reader, equipped with a 540/630 nm filter set for excitation and emission. Bacterial cell plating on agar plates was also performed at each time point, using serial dilutions.<br><br></p> |
<h4>Growth medium</h4> | <h4>Growth medium</h4> | ||
- | <p>M9-glucose medium was privileged in our experiments. As a matter of fact, it displays very low auto fluorescence and contains a single carbon source - glucose – hence providing more repeatable results than Luria-Bertani (LB) medium. pRep4 and pQE30::KR are respectively kanamycin and ampicillin-resistant, and these antibiotics were used at 50 µg/µL and 200 µg/µL.<br><br> | + | <p>M9-glucose medium was privileged in our experiments. As a matter of fact, it displays very low auto fluorescence and contains a single carbon source - glucose – hence providing more repeatable results than Luria-Bertani (LB) medium. pRep4 and pQE30::KR are respectively kanamycin and ampicillin-resistant, and these antibiotics were used at 50 µg/µL and 200 µg/µL.<br><br></p> |
- | One important point for our project was to reach a high level of KR expression, without slowing down cellular growth. As a matter of fact, to increase or decrease the amount of viable cells in our culture, we needed to make sure that the bacteria expressing KR could grow in the dark and be killed in response to light stimulations. Now, the more KR is present inside bacteria, the more ROS are produced upon illumination and the more likely | + | <h4>IPTG induction</h4> |
- | To answer these questions, we decided to induce KR expression with different concentrations | + | <p>One important point for our project was to reach a high level of KR expression, without slowing down cellular growth. As a matter of fact, to increase or decrease the amount of viable cells in our culture, we needed to make sure that the bacteria expressing KR could grow in the dark and be killed in response to light stimulations. Now, the more KR is present inside bacteria, the more ROS are produced upon illumination and the more likely the cells are to die. But is bacterial growth affected by high intracellular concentrations of KR? Is there an optimal IPTG concentration to reach high levels of KR without disturbing cell division?<br><br> |
+ | To answer these questions, we decided to induce KR expression with different concentrations of IPTG, while monitoring OD610 and fluorescence. M15 cells transformed with pSB1C3::pLac-RBS-mCherry (BBa_K1141000) were used as a negative control. To evaluate the amount of KR proteins per living cell, we normalized fluorescence by optical density. Results are shown in figure 3.<br><br></p> | ||
<p align="center"><img src="https://static.igem.org/mediawiki/2013/4/41/Grenoble_Growth_mCherry_vs_KR.png" alt="mCherry vs KR" height="350px"></p> | <p align="center"><img src="https://static.igem.org/mediawiki/2013/4/41/Grenoble_Growth_mCherry_vs_KR.png" alt="mCherry vs KR" height="350px"></p> | ||
- | <p id="legend">Figure 3.<br>OD610 and Fluorescence/OD610 as a function of time | + | <p id="legend">Figure 3.<br>OD610 (A and C) and Fluorescence/OD610 ratios (B and D) as a function of time for KillerRed (left panels) and mCherry (right panels)-expressing <em>E. coli</em>. The curves obtained with different concentrations of IPTG are represented in different colors as indicated on the legends at the right.<br><br></p> |
- | <p><strong>CONCLUSION WITH O.O5mM IPTG !</strong></p> | + | <p><strong>CONCLUSION WITH O.O5mM IPTG ! ADRIEN, could you please conclude to be sure that the english is correct ? The idea is to say that among the concentration in IPTG providing normal cellular growth, the one giving the highest Fluorescence/OD610 ratio (0.05mM) was chosen, to get as many KR intracellular KR proteins as possible. THANKS!!! </strong></p> |
</li> | </li> | ||
Revision as of 22:08, 30 September 2013