Team:Grenoble-EMSE-LSU/Project/Biology

From 2013.igem.org

(Difference between revisions)
Line 98: Line 98:
<h3>Comparison with mCherry: Cellular Death is ROS-mediated</h3>
<h3>Comparison with mCherry: Cellular Death is ROS-mediated</h3>
<p>We demonstrated in the previous section that KillerRed-expressing bacteria could be killed upon white light illumination. However, exposure to white light and incubation outside of the normal temperature range were shown to affect bacterial growth [1]. Therefore, we decided to perform additional kinetics, using mCherry-expressing bacteria as a negative control. Results of these experiments demonstrated that KillerRed is responsible for cell death in response to white light stimulations.<br><br></p>
<p>We demonstrated in the previous section that KillerRed-expressing bacteria could be killed upon white light illumination. However, exposure to white light and incubation outside of the normal temperature range were shown to affect bacterial growth [1]. Therefore, we decided to perform additional kinetics, using mCherry-expressing bacteria as a negative control. Results of these experiments demonstrated that KillerRed is responsible for cell death in response to white light stimulations.<br><br></p>
-
<h4>Construction of BBa_K1141000 : pLac-RBS-mCherry</h4>
+
-
<p>mCherry is a red fluorescent protein that displays the same excitation and emission spectra as KillerRed [2]. Furthermore, this protein was shown not to be cytotoxic upon white light illumination [3]. For these reasons, the pSB1C3::pLac-RBS-mCherry biobrick (BBa_K1141000) was designed and
+
-
built by our team.<br><br></p>
+
<h4>Kinetics</h4>
<h4>Kinetics</h4>
 +
                                        <p> mCherry and KillerRed-expressing M15 bacteria were inoculated at OD610 = 0.015 in LB medium, supplemented with antibiotics and 0.05 mM IPTG. Cell samples were subsequently incubated at 37°C, 200 rpm. Fluorescence (540/630 nm) and OD610 measurements were performed every 20-100 min for 535 min. Erlenmeyers were kept in the dark for the first 180 min, and were then illuminated (P = 0.03 µW/cm2) for the rest of the experiment.<br><br></p>
<p align="center"><img src="https://static.igem.org/mediawiki/2013/a/a9/Grenoble_mCherry_vs_KR.png" alt="mCherry vs KR" width="750px"></p>
<p align="center"><img src="https://static.igem.org/mediawiki/2013/a/a9/Grenoble_mCherry_vs_KR.png" alt="mCherry vs KR" width="750px"></p>
-
<p id="legend">Figure 1.<br>OD610 <strong>A</strong> and fluorescence <strong>B</strong> over time of mCherry and KillerRed expressing M15 bacteria. Constant light illumination at maximum intensity was applied from 180 min to 535 min. Temperature was measured in each Erlenmeyer during illumination and was shown to stay constant and equal to 37°C. The error bars represent the standard errors of 2 independent measurements.<br><br></p>
+
<p id="legend">Figure 1.<br>OD610 <strong>A</strong> and fluorescence <strong>B</strong> as a function of time of mCherry and KillerRed expressing M15 bacteria. Constant light illumination at maximum intensity was applied from 180 min to 535 min. Temperature was measured in each Erlenmeyer during illumination and was shown to stay constant and equal to 37°C. The error bars represent the standard errors of 2 independent measurements.<br><br></p>
-
<p>Both cell strains display similar growth dynamics in absence of illumination, with growth rates of 1.39h-1 and 0.57 h-1 in early (0-120) and late (120-180) exponential phase, respectively. Fluorescence data show that the concentration in KillerRed during this period increases exponentially while mCherry is not expressed yet, possibly because of differences between origins of replication in pQE30 and pSB1C3 plasmid backbones (HELP ! pSB1C3 ORI 500-700 copies against 300-500 for pQE30 ORI. Can it really come from differences between both promoters?).<br><br>
+
<p>Both cell strains display similar growth dynamics in the dark, with growth rates of 1.39h-1 and 0.57 h-1 in early (0-120 min) and late (120-180 min) exponential phase, respectively. At t = 255 min occurs a strong decrease in the growth rate of KR-expressing cells as compared to mCherry-expressing cells. This phenomenon, described in the previous section, is due to the killing of bacteria in response to light stimulations. Since the viability of mCherry-expressing cells is not affected, we conclude that KR is responsible for the decrease in the number of living bacteria when illuminating the sample with white light. Cell death is coupled to a decrease in the amount of fluorescing KR proteins. This phenomenon, known as photobleaching, was shown to be a good indicator of the amount of ROS produced by KR upon light illumination [3]. Free radicals such as H2O2 are highly reactive, and cause damage to endogenous proteins and DNA, ultimately leading to cell death. <em>E. coli</em> defense mechanisms against oxidative stress, including the superoxide dismutase and catalase enzymes [4], seem insufficient in preventing significant and irreversible ROS-mediated damages inside bacteria.</p>
-
At t = 255 min occurs a strong decrease in the growth rate of KR-expressing cells as compared to mCherry-expressing cells. This phenomenon, described in the previous section, is due to the killing of bacteria in response to light stimulations. Since the viability of mCherry-expressing cells is not affected, we conclude that KR is responsible for the decrease in the number of living bacteria when illuminating the sample with white light. Cell death is coupled to a decrease in the amount of fluorescing KR proteins. This phenomenon, known as photobleaching, was shown to be a good indicator of the amount of ROS produced by KR upon light illumination [3]. Free radicals such as H2O2 are highly reactive, and cause damage of endogenous proteins and DNA strands, ultimately leading to cell death. <em>E. coli</em> defense mechanisms against oxidative stress, including the superoxide dismutase and catalase enzymes [4], seem insufficient for preventing significant and irreversible ROS-mediated damages inside bacteria.</p>
+
<h3>Cell Growth Recovery after Stopping Illumination</h3>
<h3>Cell Growth Recovery after Stopping Illumination</h3>

Revision as of 00:13, 1 October 2013

Grenoble-EMSE-LSU, iGEM


Grenoble-EMSE-LSU, iGEM

Retrieved from "http://2013.igem.org/Team:Grenoble-EMSE-LSU/Project/Biology"