Team:DTU-Denmark/LaTexEquations
From 2013.igem.org
(Created page with "{{:Team:DTU-Denmark/Templates/StartPage|LatexEquations}} __NOTOC__ <div class="overviewPage"> <div class="overviewBox left"> Latex How to make special symbols $\alpha$, $\bet...") |
|||
Line 18: | Line 18: | ||
\Delta =\sum_{i=1}^N w_i (x_i - \bar{x})^2 . | \Delta =\sum_{i=1}^N w_i (x_i - \bar{x})^2 . | ||
\end{equation} | \end{equation} | ||
- | It is a good idea to number equations, but we can have | + | It is a good idea to number equations, but we can have an equation without a number by writing |
- | equation without a number by writing | + | |
\begin{equation} | \begin{equation} | ||
P(x) = \frac{x - a}{b - a} , \nonumber | P(x) = \frac{x - a}{b - a} , \nonumber |
Revision as of 07:34, 12 July 2013
LatexEquations
Latex
How to make special symbols $\alpha$, $\beta$, $\gamma$, $\delta$,$\pi$, $\sin x$, $\hbar$, $\lambda$, $\ldots$ We also can make subscripts $A_{x}$, $A_{xy}$ and superscripts, $e^x$, $e^{x^2}$, and $e^{a^b}$.
How to write equations.
\begin{equation}
\Delta =\sum_{i=1}^N w_i (x_i - \bar{x})^2 .
\end{equation}
It is a good idea to number equations, but we can have an equation without a number by writing
\begin{equation}
P(x) = \frac{x - a}{b - a} , \nonumber
\end{equation}
and
\begin{equation}
g = \frac{1}{2} \sqrt{2\pi} . \nonumber
\end{equation}
Examples of more complicated equations: \begin{equation} I = \! \int_{-\infty}^\infty f(x)\,dx \label{eq:fine}. \end{equation}
How to align several equations: \begin{align} a & = b \\ c &= d , \end{align}
We can also have different cases: \begin{equation} \label{eq:mdiv} m(T) = \begin{cases} 0 & \text{$T > T_c$} \\ \bigl(1 - [\sinh 2 \beta J]^{-4} \bigr)^{\! 1/8} & \text{$T < T_c$} \end{cases} \end{equation}
Common Greek letters: $\alpha, \beta, \gamma, \Gamma, \delta,\Delta, \epsilon, \zeta, \eta, \theta, \Theta, \kappa, \lambda, \Lambda, \mu, \nu, \xi, \Xi, \pi, \Pi, \rho, \sigma, \tau, \phi, \Phi, \chi, \psi, \Psi, \omega, \Omega$
Special Symbols: The derivative is defined as \begin{equation} \frac{dy}{dx} = \lim_{\Delta x \to 0} \frac{\Delta y} {\Delta x} \end{equation} \begin{equation} f(x) \to y \quad \mbox{as} \quad x \to x_{0} \end{equation} \begin{equation} f(x) \mathop {\longrightarrow} \limits_{x \to x_0} y \end{equation}
Order of magnitude: \begin{equation} \log_{10}f \simeq n \end{equation} \begin{equation} f(x)\sim 10^{n} \end{equation} Approximate equality: \begin{equation} f(x)\simeq g(x) \end{equation} Remember to keep everything in proportion: \begin{equation} f(x) \propto x^3 . \end{equation}