Team:Tuebingen/Notebook/Journal/Weekly

From 2013.igem.org

(Difference between revisions)
m
Line 155: Line 155:
<div class="journalWrapper"> <!-- start copy here -->
<div class="journalWrapper"> <!-- start copy here -->
<h3>Week 11</h3>
<h3>Week 11</h3>
-
 
+
<p></p>
</div> <!-- end copy here -->
</div> <!-- end copy here -->
Line 162: Line 162:
<div class="journalWrapper"> <!-- start copy here -->
<div class="journalWrapper"> <!-- start copy here -->
<h3>Week 10</h3>
<h3>Week 10</h3>
-
 
+
<p>After a depressing gelelectrophoresis we now know that last week's plasmid preparations that we have sent in for sequencing did not work out. Nevertheless, we did a colony-PCR, plasmid preparation and control restriction digest of rox1-pTUM100 and Panb1-pTUM100. A gelextraction of Tadh1 was successful and further refining of the gelextraction commenced. A transformation of Padh1 and Psuc2 in pTUM had no colonies and plasmid preparations of last week's transformations (Padh1-pTUM100 and Psuc2-pTUM100) had negative gels after a control restriction digest.We prepared restrictions of pTUM100, mig1, mPR Dr, and mPR Xl and attempted a ligation + transformation of mig1, mPR Dr, and mPR Xl, in pTUM100 and in pSB1C3.</p>
</div> <!-- end copy here -->
</div> <!-- end copy here -->
Line 169: Line 169:
<div class="journalWrapper"> <!-- start copy here -->
<div class="journalWrapper"> <!-- start copy here -->
<h3>Week 9</h3>
<h3>Week 9</h3>
-
<p>A new batch of chemo-competent cells had promising results. However, PCR purification of Tadh1 did not work out very well due to its small size - Tadh1 might just flow through the columns without adsorbing. Restriction digests of pTUM103 and pTUM104 and pSB1C3 plasmid preparations worked well thus we were able to ligate Padh1 and rox1 into pSB1C3 this week! Plasmid preparations of luc, Psuc2 and Padh1 had good results and were sent in for sequencing. A colony-PCR of Psuc2 and normal PCR of Tadh1 was successful thus further steps could be initiated. However, transformation of rox1-pTUM100 and Panb1-pTUM100 were unsuccessful - can't have everything in one week.</p>
+
<p>A new batch of chemo-competent cells had promising results. However, PCR purification of Tadh1 did not work out very well due to its small size - Tadh1 might just flow through the columns without adsorbing. Restriction digests of pTUM103 and pTUM104 and pSB1C3 plasmid preparations seemed to work well thus we were able to ligate Padh1 and rox1 into pSB1C3 this week! Plasmid preparations of luc, Psuc2 and Padh1 had good results and were sent in for sequencing. A colony-PCR of Psuc2 and normal PCR of Tadh1 was successful thus further steps could be initiated. However, transformation of rox1-pTUM100 and Panb1-pTUM100 were unsuccessful - can't have everything in one week.</p>
</div> <!-- end copy here -->
</div> <!-- end copy here -->

Revision as of 22:32, 4 October 2013

Return to iGEM Main Page.

Weekly Journal

Jump to Week 1.

 

Week 26


Week 25


Week 24


Week 23


Week 22


Week 21


Week 20


Week 19


Week 18


Week 17


Week 16


Week 15


Week 14


Week 13


Week 12


Week 11


Week 10

After a depressing gelelectrophoresis we now know that last week's plasmid preparations that we have sent in for sequencing did not work out. Nevertheless, we did a colony-PCR, plasmid preparation and control restriction digest of rox1-pTUM100 and Panb1-pTUM100. A gelextraction of Tadh1 was successful and further refining of the gelextraction commenced. A transformation of Padh1 and Psuc2 in pTUM had no colonies and plasmid preparations of last week's transformations (Padh1-pTUM100 and Psuc2-pTUM100) had negative gels after a control restriction digest.We prepared restrictions of pTUM100, mig1, mPR Dr, and mPR Xl and attempted a ligation + transformation of mig1, mPR Dr, and mPR Xl, in pTUM100 and in pSB1C3.


Week 9

A new batch of chemo-competent cells had promising results. However, PCR purification of Tadh1 did not work out very well due to its small size - Tadh1 might just flow through the columns without adsorbing. Restriction digests of pTUM103 and pTUM104 and pSB1C3 plasmid preparations seemed to work well thus we were able to ligate Padh1 and rox1 into pSB1C3 this week! Plasmid preparations of luc, Psuc2 and Padh1 had good results and were sent in for sequencing. A colony-PCR of Psuc2 and normal PCR of Tadh1 was successful thus further steps could be initiated. However, transformation of rox1-pTUM100 and Panb1-pTUM100 were unsuccessful - can't have everything in one week.


Week 8

Unfortunately, first exams reduced lab-work even further. We had a successful PCR of Panb1 and Tadh1 and attempted ligations of rox1 in pTUM (cut with X/S) and of Panb1 in pTUM (cut with E/P).


Week 7

Since many ligations and transformations resulted in empty vectors (or even worse: no vectors at all) we started experimenting with higher concentrations of chloramphenicol and ampiciline in our plates. We prepared some more PCRs of Panb1 and Tadh1 but could not identify any stains on the subsequent gel. Restriction digests of Padh1 and Psuch with XbaI/SpeI and EcoRI/PstI were unsuccessful. However, rox1 PCRs were more successful.


Week 6

Chemo-competent cells: next try. This time we actually did everything correct and had wonderfully working chemo-competent cells! Our first colony-PCRs of Padh1 and Psuc2 were successful - stains were at the correct positions in the initial gel. However, gelextractions of both cultures yielded empty vectors...


Week 5

This week, summer semester started thus time for lab-work decreased gradually.

We have created new chemo-competent cells since previous attempts failed due to insufficient cooling of cells. However, we had no luck again and had way too low trafo efficiencies with these cells. Even worse, Pfet3 PCRs still were annoyingly problematic for reasons we simply could not work out. Fortunately, we managed to complete a PCR of luc (hunderds of bp) and transformed luc in E. coli.


Week 4

Pfet3 PCRs remainded a huge problem - nothing we tried seemed to work out. Also, we have produced new chemo-competent cells and tried to test the pTUM-vectors by ligation with some of our parts. We also tried to amplify a full fragment of luc (after successful site-directed-mutagenesis). After many experiments we have finally found an ideal protocol for gelelectrophoreses that does not include expensive post-staining: we basically use more loading buffer and make the wells full to overflow!


Week 3

The first thing we did in this week, was a control restriction of last week's ligations. Unfortunately, not one single ligation was successful thus this whole step had to be repeated. Our work with luc (i.e. luc quick-change) continued, additional PCRs went well, and we made plans how to control luc's quality once both restriction sites were eliminated.

This week, we received a package containing pTUM yeast vectors from TU Munich's iGEM Team! We need the pTUM vectors from pTUM100 to pTUM104 in order to add missing BioBrick restriction sites to some of our parts.


Week 2

Further PCRs of Panb1 and Pfet3 were more promising but Pfet3 still made lots of problems because there were only very faint Pfet3 stains on our gels. We transformed pSB1C3 and RFP into E. coli and our first plasmid extractions of these parts went pretty smooth. We yielded pretty good amounts of DNA and after some restriction digests we were able to ligate Panb1 into pSB1C3!


Week 1

We started out our iGEM project with several unsuccessful PCRs of Pfet3. We also tried restriction digests and ligations of Psuc2, rox1, mig1, and the mPRs into pSB1C3– without positive results. Unfortunately, we had massive problems (smiling marker) with staining our gelelectrophoresis gels thus had to start off our project with trouble-shooting. After some experiments we came to the conclusion that post-staining would be an expensive way to solve our gel problems. Due to better gels we could prove the successful PCRs of Panb1 and Psuc2 and promptly started ligation and transformation of these parts. Initial transformations of mig1 were unsuccessful. However, luc PCRs went very well and we already had highest hopes for this part. Unfortunately, we found two illegal restriction sites (EcoRI and XbaI) inside of luc thus we had to come up with something special: site-directed-mutagenesis (quick-change) using 3 pairs of primers and Pfu-polymerase. Restricitons of Padh1, Psuc2, rox1, mig1, mPR Dr, mPR Xl and RFP (our initial reporter) went rather well but due to missing negative controls in the control gel further steps were not possible this week.

Back to top