Team:Bielefeld-Germany/Results
From 2013.igem.org
Line 96: | Line 96: | ||
==Riboflavin== | ==Riboflavin== | ||
- | *Riboflavin possesses the ability to be a potent redoxmediator. By turning the rib-gene cluster from Shewanella oneidensis into a BioBrick and subsequently cloning it into the desired chasi Escherichia coli, the iGEM Team Bielefeld was able to raise the amount of riboflavin produced by E. coli significantly. | + | *Riboflavin possesses the ability to be a potent redoxmediator. By turning the rib-gene cluster from Shewanella oneidensis into a BioBrick and subsequently cloning it into the desired chasi Escherichia coli, the iGEM Team Bielefeld was able to raise the amount of riboflavin produced by E. coli significantly. <br> This means that the transformation of E. coli with BBa_K1172303, respectively BBa_K1172306, represents a viable option when considering genetical optimization of microorganisms intended for usage in microbial fuel cells (MFC). |
- | This means that the transformation of E. coli with BBa_K1172303, respectively BBa_K1172306, represents a viable option when considering genetical optimization of microorganisms intended for usage in microbial fuel cells (MFC). | + | |
Revision as of 01:35, 5 October 2013
Results
MFC
Exogenous Mediators
Glycerol dehydrogenase
We demonstrate that engineering E. coli by introduction of appropriate oxidoreductase glycerol dehydrogenase via gene manipulation can greatly improve the mediator production and power generation. We can show an extremely increased intracellular- and extracellular NADH concentration. This leads to 20 % enhanced current production in our Microbial Fuel Cell. The overexpression of Glycerol dehydrogenase from Escherichia coli is a great genetic optimization for electron shuttle-mediated extracellular electron transfer from bacteria to electrodes. Read more about GldA in detail.
Riboflavin
- Riboflavin possesses the ability to be a potent redoxmediator. By turning the rib-gene cluster from Shewanella oneidensis into a BioBrick and subsequently cloning it into the desired chasi Escherichia coli, the iGEM Team Bielefeld was able to raise the amount of riboflavin produced by E. coli significantly.
This means that the transformation of E. coli with BBa_K1172303, respectively BBa_K1172306, represents a viable option when considering genetical optimization of microorganisms intended for usage in microbial fuel cells (MFC).
Phenazine
Porins
We heterologously expressed the porin protein OprF from Pseudomonas fluorescens into Escherichia coli. This leads to dramatically increased membrane permeability and a much higher current output in comparison to its parental strain (E. coli KRX) caused by improved electron shuttle-mediated extracellular electron transfer. The heterologous expression of outer membrane porin OprF from Pseudomonas fluorescens in Escherichia coli is a great genetic strategy to improve electricity generation by microorganisms. Read more in detail.
Cytochromes
We isolated the mtrCAB gene cluster from Shewanella oneidensis MR-1 and cloned it into the backbone pSB1C3 generating the BioBrick <bbpart>K1172401</bbpart>. We combined this gene cluster with three promoters of varying strength. We transformed them into our host organism Escherichia coli,, though we could not verify correct expression and localisation. Read more in detail.
Nanowires
Biosafety