Team:BIT/project hardware

From 2013.igem.org

(Difference between revisions)
Line 54: Line 54:
}
}
-
a { color: #999; text-decoration: none; font-family: Verdana;}
+
a {
 +
color: #16E9E9;
 +
text-decoration: none;
 +
font-family: Verdana;
 +
}
#content a { color: #000; text-decoration: none; font-family: Verdana;}
#content a { color: #000; text-decoration: none; font-family: Verdana;}
Line 138: Line 142:
}
}
#footer1 a {color:#FFF;}
#footer1 a {color:#FFF;}
-
#left {
 
-
background-image:url(https://static.igem.org/mediawiki/2013/5/52/Bitleft.png);
 
-
float: left;
 
-
height: 500px;
 
-
width: 200px;
 
-
}
 
-
#left ul {
 
-
list-style: none; margin: 25px auto; padding: 0px;
 
-
}
 
-
#left ul li {
 
-
padding-top: 25px;
 
-
font-size: 16px;
 
-
text-align:center;
 
-
}
 
-
#left ul li a { font-size: 16px; display:block; height: 26px; line-height: 26px;}
 
-
#left ul li a:hover { background:#333; color:#fff;}
 
-
#right {
 
-
background-image:url(https://static.igem.org/mediawiki/2013/3/38/Bitbbb.png);
 
-
height: 500px;
 
-
width: 824px;
 
-
margin-left: 200px;
 
-
}
 
-
#right a {color: #09F;}
 
-
#b1{color: #09F;}
 
-
#b1: hover { color: #F00;}
 
-
#d1 {
 
-
color: #fff;
 
-
font-size: small;
 
-
}
 
#d1:hover { color: #F00;}
#d1:hover { color: #F00;}
.t1{
.t1{
Line 180: Line 155:
}
}
.t2{
.t2{
-
font-family: Verdana, Geneva, sans-serif;
+
font-family: Arial, Helvetica, sans-serif;
font-size: medium;
font-size: medium;
-
color: #CFF;
+
color: #FFF;
line-height: 25px;
line-height: 25px;
padding-top: 10px;
padding-top: 10px;
Line 188: Line 163:
padding-bottom: 20px;
padding-bottom: 20px;
padding-left: 20px;
padding-left: 20px;
 +
text-align: left;
}
}
.bg{ background-color:black;}
.bg{ background-color:black;}
Line 193: Line 169:
.bg3 {color: #CCC;background-image:url(https://static.igem.org/mediawiki/2013/3/38/Bitbbb.png);}
.bg3 {color: #CCC;background-image:url(https://static.igem.org/mediawiki/2013/3/38/Bitbbb.png);}
 +
body {
 +
background-color: #000;
 +
}
 +
q {
 +
font-size: x-large;
 +
}
 +
.qqq {
 +
font-family: Arial, Helvetica, sans-serif;
 +
font-size: large;
 +
font-style: italic;
 +
color: #0F0;
 +
font-weight: bold;
 +
}
 +
.tou {
 +
font-family: "Courier New", Courier, monospace;
 +
font-size: x-large;
 +
font-style: oblique;
 +
color: #F0F;
 +
}
 +
.tou {
 +
font-family: "Comic Sans MS", cursive;
 +
font-size: x-large;
 +
color: #F0F;
 +
text-decoration: blink;
 +
text-align: left;
 +
}
 +
.nor {
 +
font-family: Arial, Helvetica, sans-serif;
 +
color: #FFF;
 +
font-style: normal;
 +
font-size: medium;
 +
text-align: left;
 +
font-weight: bold;
 +
}
 +
.tou p {
 +
text-align: left;
 +
font-weight: bold;
 +
}
</style>
</style>
</head>
</head>
Line 221: Line 235:
-
      <td class="t2">&nbsp;&nbsp;&nbsp;&nbsp;As we know, antibiotics are widely used in modern industry to prevent the infection of cow breasts. However, the residual of antibiotics and other components, such as Cr (VI) which is widely used in the recycle of proteins from leather, will endanger the health of customers. Therefore, it is necessary to find solution to identify these harmful chemicals, but the method of timely detection of harmful chemicals in products still remains unsolved. <br/>
+
      <td bgcolor="#000000" class="tou">&nbsp;&nbsp;&nbsp;
-
  &nbsp;&nbsp;&nbsp;&nbsp;To solve this problem, our sensor has been divided into three, respectively, of <a id="b1" href="https://2013.igem.org/Team:BIT/project_biosensors">hexavalent chromium, tetracycline and β-lactam</a> there is a response, for each sensor, we are all assembled in a downstream of the <a id="b1" href="https://2013.igem.org/Team:BIT/project_AC">amplification block</a> (amplifier) and the <a id="b1" href="https://2013.igem.org/Team:BIT/project_AC">control block </a>(controller), the output signal to be amplified, by adjusting the concentration of IPTG to achieve the adjustment of magnification. Amplifier by the T7 RNA polymerase gene and T7 promoter composition control block is through the downstream of the T7 promoter plus <i>lacO</i> and the addition of regular expression <i>lacI</i>, by adjusting the concentration of IPTG, <i>lacO</i> then adjust the boot situation achieved, the final response module for the green fluorescent protein.<br/>
+
        <p>BIT's Measurement </p>
-
  &nbsp;&nbsp;&nbsp;&nbsp;In order to achieve real-time detection, we also made a <a  id="b1" href="https://2013.igem.org/Team:BIT/project_microchip">biochip</a> which provided a reaction room for both engineering bacteria and samples. Now we are able to detect all these three harmful chemicals with a<a id="b1" href="https://2013.igem.org/Team:BIT/project_hardware"> hand-held electronic equipment</a> made by ourselves.</td>
+
        <p>&nbsp; </p>
 +
        <p>&nbsp;</p>
 +
        <p class="qqq"> <span class="t2"><span class="t1"><span class="nor">Ok , Now we have contributed a new sensor , put forward a concept of controlled amplifier and are working on optimizing it .But  we think this is just a start ,for we can then use this kind of idea to detect  nearly all kinds of antibiotics in the future and we are still trying our best  to do so . </span></span></span></p>
 +
        <table width="787" border="0" cellspacing="0" cellpadding="0">
 +
          <tr>
 +
            <td width="636"><img src="https://static.igem.org/mediawiki/2013/5/5e/BITant.jpg" width="600">a</td>
 +
            <td width="151" class="nor"><p class="qqq">Antibiotics around</p>
 +
                <p class="qqq"> the globe</p></td>
 +
              </tr>
 +
            </table>
 +
        <p class="qqq">&nbsp;</p>
 +
          <p class="qqq">Q:<span class="nor">So ,you have already pur forward a new sensor and a <a href="https://2013.igem.org/Team:BIT/project_AC">controlled amplifier </a>,that's great but I saw a <a href="https://2013.igem.org/Team:BIT/project_microchip">micro chip </a>on your wiki , I wonder what is it used for .</span></p>
 +
          <p class="qqq"><span class="ans"><span class="qqq">A:</span></span><span class="nor"> well ,that 's it ! first ,have a look at the picture below :</span></p>
 +
          <table width="890" border="0" cellspacing="0" cellpadding="0">
 +
            <tr>
 +
              <td width="396"><img src="https://static.igem.org/mediawiki/2013/d/d1/BITsam.jpg" width="350"></td>
 +
              <td width="494" class="nor">This first picture shows that we can hardly see any differences between our samples in normal conditions , the second picture is what we see under UV light , looking through a narrowband filter ,we can get the 3rd picture .</td>
 +
            </tr>
 +
          </table>
 +
          <p class="nor">&nbsp;&nbsp;&nbsp;&nbsp;but don't you think that 's so hard to detect milk using this kind of method as narrowband filter and UV exiting light are hard to find out of the lab ?</p>
 +
          <p class="qqq">&nbsp;&nbsp;&nbsp;&nbsp;<span class="nor">the chip ,together with a electronic device , is a perfect solution to this problem . Just inject the milk and engineering bacteria into the chip </span> <span class="nor">,and put the chip into the electronic device ,wait for some time ,then we can directly read the data on the screen .</span></p>
 +
          <table width="740" border="0" cellspacing="0" cellpadding="0">
 +
            <tr>
 +
              <td width="350"><img src="https://static.igem.org/mediawiki/2013/c/c7/BITdet.jpg" width="350"></td>
 +
              <td width="344"><img src="https://static.igem.org/mediawiki/2013/9/9a/BITscr.jpg" width="344" height="269"></td>
 +
              <td width="46"><img src="https://static.igem.org/mediawiki/2013/2/22/BITrst.jpg" width="368" height="267"></td>
 +
            </tr>
 +
          </table>
 +
          <p class="qqq">&nbsp;</p>
 +
          <p class="qqq">Q: <span class="nor">Oh I see , it is just a small Fluorescence microplate reader , right?</span></p>
 +
          <p class="qqq">A:<span class="nor">Well ,many people have asked this question . On the one hand , it uses the lightpath similiar to the Fluorescence microplate reader, but on the other hand , it is not just a detector , it is a new concept ,not only for BIT ,but for the whole iGEM.</span></p>
 +
          <p class="qqq">Q:<span class="nor">That sounds interesting ,so what the concept is ? I wonder how can it help iGEM.</span></p></td>
</body>
</body>
</html>
</html>

Revision as of 12:57, 26 October 2013

iGEM BIT

   

BIT's Measurement

 

 

Ok , Now we have contributed a new sensor , put forward a concept of controlled amplifier and are working on optimizing it .But we think this is just a start ,for we can then use this kind of idea to detect nearly all kinds of antibiotics in the future and we are still trying our best to do so .

a

Antibiotics around

the globe

 

Q:So ,you have already pur forward a new sensor and a controlled amplifier ,that's great but I saw a micro chip on your wiki , I wonder what is it used for .

A: well ,that 's it ! first ,have a look at the picture below :

This first picture shows that we can hardly see any differences between our samples in normal conditions , the second picture is what we see under UV light , looking through a narrowband filter ,we can get the 3rd picture .

    but don't you think that 's so hard to detect milk using this kind of method as narrowband filter and UV exiting light are hard to find out of the lab ?

    the chip ,together with a electronic device , is a perfect solution to this problem . Just inject the milk and engineering bacteria into the chip ,and put the chip into the electronic device ,wait for some time ,then we can directly read the data on the screen .

 

Q: Oh I see , it is just a small Fluorescence microplate reader , right?

A:Well ,many people have asked this question . On the one hand , it uses the lightpath similiar to the Fluorescence microplate reader, but on the other hand , it is not just a detector , it is a new concept ,not only for BIT ,but for the whole iGEM.

Q:That sounds interesting ,so what the concept is ? I wonder how can it help iGEM.