Team:Heidelberg/Templates/Modelling/Ind-Production
From 2013.igem.org
(Created page with "<html> <h2 id="Challenge"> Challenge </h2> Based on coupled ordinary differential equations (ODEs). Mathematical modelling allows for <bib id="pmid24098642"/> Identifiability an...") |
|||
Line 6: | Line 6: | ||
+ | <h2 id="Approach"> Approach </h2> | ||
The ODE system determining the time evolution of the dynamical variables is given by the following four equations: | The ODE system determining the time evolution of the dynamical variables is given by the following four equations: | ||
- | |||
<p> | <p> | ||
Line 18: | Line 18: | ||
$$\mathrm{d}\mathrm{[Ind]}/\mathrm{d}t = {\mathrm{[cGlu]}}^2 \cdot \mathrm{kdim\_native\_svp} - \mathrm{[Ind]} \cdot \mathrm{kdegi\_native\_svp} $$ | $$\mathrm{d}\mathrm{[Ind]}/\mathrm{d}t = {\mathrm{[cGlu]}}^2 \cdot \mathrm{kdim\_native\_svp} - \mathrm{[Ind]} \cdot \mathrm{kdegi\_native\_svp} $$ | ||
</p> | </p> | ||
+ | |||
+ | <h2 id="Results"> Results </h2> | ||
+ | |||
+ | <h2 id="Conclusion"> Conclusion and Outlook </h2> | ||
+ | |||
+ | |||
</html> | </html> |
Revision as of 10:51, 27 October 2013
Challenge
Based on coupled ordinary differential equations (ODEs). Mathematical modelling allows forApproach
The ODE system determining the time evolution of the dynamical variables is given by the following four equations:$$ \mathrm{d}\mathrm{[Bac]}/\mathrm{d}t = -\frac{\mathrm{[Bac]} \cdot \left(\mathrm{[Bac]} - \mathrm{Bacmax\_native\_svp}\right) \cdot \left(\mathrm{beta\_native\_svp} - \mathrm{[Ind]} \cdot \mathrm{ki\_native\_svp}\right)}{\mathrm{Bacmax\_native\_svp}} $$ $$\mathrm{d}\mathrm{[Glu]}/\mathrm{d}t = - \mathrm{[Bac]} \cdot \mathrm{[Glu]} \cdot \mathrm{ksyn\_native\_svp} $$ $$\mathrm{d}\mathrm{[cGlu]}/\mathrm{d}t = - \mathrm{kdim\_native\_svp} \cdot {\mathrm{[cGlu]}}^2 - \mathrm{kdegg\_native\_svp} \cdot \mathrm{[cGlu]} + \mathrm{[Bac]} \cdot \mathrm{[Glu]} \cdot \mathrm{ksyn\_native\_svp} $$ $$\mathrm{d}\mathrm{[Ind]}/\mathrm{d}t = {\mathrm{[cGlu]}}^2 \cdot \mathrm{kdim\_native\_svp} - \mathrm{[Ind]} \cdot \mathrm{kdegi\_native\_svp} $$