Team:Heidelberg/Templates/Modelling/Ind-Production

From 2013.igem.org

(Difference between revisions)
Line 4: Line 4:
Based on coupled ordinary differential equations (ODEs).
Based on coupled ordinary differential equations (ODEs).
Mathematical modelling allows for <bib id="pmid24098642"/> Identifiability analysis<bib id="pmid21198117"/>
Mathematical modelling allows for <bib id="pmid24098642"/> Identifiability analysis<bib id="pmid21198117"/>
 +
 +
We adapted our ODE for bacterial growth from equation (7) in <bib id="pmid24123647"/>

Revision as of 13:48, 27 October 2013

Challenge

Based on coupled ordinary differential equations (ODEs). Mathematical modelling allows for Identifiability analysis We adapted our ODE for bacterial growth from equation (7) in

Approach

The ODE system determining the time evolution of the dynamical variables is given by the following four equations:

$$ \mathrm{d}\mathrm{[Bac]}/\mathrm{d}t = -\frac{\mathrm{[Bac]} \cdot \left(\mathrm{[Bac]} - \mathrm{Bacmax\_native\_svp}\right) \cdot \left(\mathrm{beta\_native\_svp} - \mathrm{[Ind]} \cdot \mathrm{ki\_native\_svp}\right)}{\mathrm{Bacmax\_native\_svp}} $$ $$\mathrm{d}\mathrm{[Glu]}/\mathrm{d}t = - \mathrm{[Bac]} \cdot \mathrm{[Glu]} \cdot \mathrm{ksyn\_native\_svp} $$ $$\mathrm{d}\mathrm{[cGlu]}/\mathrm{d}t = - \mathrm{kdim\_native\_svp} \cdot {\mathrm{[cGlu]}}^2 - \mathrm{kdegg\_native\_svp} \cdot \mathrm{[cGlu]} + \mathrm{[Bac]} \cdot \mathrm{[Glu]} \cdot \mathrm{ksyn\_native\_svp} $$ $$\mathrm{d}\mathrm{[Ind]}/\mathrm{d}t = {\mathrm{[cGlu]}}^2 \cdot \mathrm{kdim\_native\_svp} - \mathrm{[Ind]} \cdot \mathrm{kdegi\_native\_svp} $$

Results

Conclusion and Outlook