Team:Evry/pop scale

From 2013.igem.org

(Difference between revisions)
Line 18: Line 18:
</p>
</p>
-
<a id="Assumptions"></a>
+
<h2>Assumptions</h2>
<ul>
<ul>
<li>No regulation of the patient's iron absorption</li>
<li>No regulation of the patient's iron absorption</li>
Line 31: Line 31:
<h2>Materials and methods</h2>
<h2>Materials and methods</h2>
<p>
<p>
-
This model is based on cellular automaton algorithm : both the bacteria and the enterobactins are cellular automaton.  
+
This model is based on a cellular automaton algorithm : both the bacteria and the enterobactins are cellular automaton.  
<a id="Fig1"></a>
<a id="Fig1"></a>
Line 43: Line 43:
</div>
</div>
<br/>
<br/>
-
La figure 1 représente les influences entre les variables d'état du système.
+
The <a href="#Fig1">Figure 1</a> represents the influence between the system's variables.
<br/>
<br/>
-
 
-
 
-
 
<table width="100%">
<table width="100%">
Line 60: Line 57:
   </div>
   </div>
</div>
</div>
 +
</td>
 +
<td width="10%">
</td>
</td>
<td>
<td>

Revision as of 03:18, 29 October 2013

Iron coli project

Introduction

The Enterobactin production model showed us that our bacteria take too much time to produce enterobactins, which disables the flush strategy.
In response, we changed the strategy, by delivering a gel that would block the bacteria in the jejunum.
This model is thus very similar to the flush treatment model, except for the longer time scale, and the computational method.

Goals

Assumptions

  • No regulation of the patient's iron absorption
  • Constant iron flow in the intestine
  • Homogeneous fluid
  • The bacterial natural absorption is insignificant compared to the chelation
  • The patient ingests 20mg of iron per day (Guideline Daily Amounts)

Materials and methods

This model is based on a cellular automaton algorithm : both the bacteria and the enterobactins are cellular automaton.

Absorption
Figure 1 : Influence graph.

The Figure 1 represents the influence between the system's variables.
Absorption
Figure 2 : Graph of bacteria automaton.
Pgrowth Division Probability
Pdeath Death probability
age variable rate of bacteria ageing

La Figure 2 représente l'automate qui modélise la bactérie. Cet automate à deux parties : la production d'enterobactines et la croissance.
The bacteria produces enterobactins. This production is ruled by a activator. Cette activateur est une fonction palier de 0 à 1 avec un seuil Ka fixer grace au modèle du senseur, dont voici l'expression :

Enterobactin chelate iron. For this automoton, we have one rules : One Enterobactin atom can chelate one Iron Ion L'automate est tout de même conditionné par un une probabilité de rencontre :.

Parameters tuning :

Results

Parameter values

Name Value Unit Description Reference
mu 0.2 s-1 Iron absorption rate by the body
IronQuantity0 4.5.10-9 mol-1 Iron pulse value
Sact 10**-9 m Duodenum length [3]
α 0.3 s-1 Duodenum absorption rate tuned
σ 0.72 s-1 Regulation coefficient tuned

References: