Team:NTU-Taida/b02901042
From 2013.igem.org
(Difference between revisions)
Heyttymonica (Talk | contribs) |
Heyttymonica (Talk | contribs) |
||
Line 1: | Line 1: | ||
=test= | =test= | ||
- | ==test== | + | =='''test'''== |
- | ===test=== | + | ===''test''=== |
Line 9: | Line 9: | ||
{{:Team:NTU-Taida/template/b02901042}} | {{:Team:NTU-Taida/template/b02901042}} | ||
- | = | + | =LaTex= |
- | + | {{anchor|以自由電荷和自由電流為源頭的表述}} | |
+ | {| class="wikitable" border="1" cellpadding="8" cellspacing="0" | ||
+ | |+以自由電荷和自由電流為源頭的表述 | ||
+ | |- | ||
+ | ! 名稱 | ||
+ | ! [[偏微分方程|微分形式]] | ||
+ | ! [[积分|積分形式]] | ||
+ | |- | ||
+ | | 高斯定律 | ||
+ | | <math>\nabla \cdot \mathbf{D} = \rho_f</math> | ||
+ | | <math>\iint_{\mathbb{S}}\!\!\!\!\!\!\!\!\!\!\!\!\;\subset\!\supset\mathbf D\cdot\mathrm{d}\mathbf{s} = Q_{f}</math> | ||
+ | |- | ||
+ | | 高斯磁定律 | ||
+ | | <math>\nabla \cdot \mathbf{B} = 0</math> | ||
+ | | <math>\iint_{\mathbb{S}}\!\!\!\!\!\!\!\!\!\!\!\!\;\subset\!\supset\mathbf B\cdot\mathrm{d}\mathbf{s} = 0</math> | ||
+ | |- | ||
+ | | 法拉第感應定律 | ||
+ | | <math>\nabla \times \mathbf{E} = - \frac{\partial \mathbf{B}} {\partial t}</math> | ||
+ | | <math>\oint_{\mathbb{L}}\ \mathbf{E} \cdot \mathrm{d}\boldsymbol{\ell} = - \frac {\mathrm{d} \Phi_\mathbf{B}}{\mathrm{d} t} </math> | ||
+ | |- | ||
+ | | 馬克士威-安培定律 | ||
+ | | <math>\nabla \times \mathbf{H} = \mathbf{J}_f + \frac{\partial \mathbf{D}} {\partial t}</math> | ||
+ | | <math>\oint_{\mathbb{L}}\ \mathbf{H} \cdot \mathrm{d}\boldsymbol{\ell} = I_{f} + \frac {\mathrm{d} \Phi_\mathbf{D}}{\mathrm{d} t} | ||
+ | </math> | ||
+ | |} |
Revision as of 04:38, 21 April 2014
Contents |
test
test
test
Template
我是模板
{{{challenge}}}!!!
LaTex
名稱 | 微分形式 | 積分形式 |
---|---|---|
高斯定律 | <math>\nabla \cdot \mathbf{D} = \rho_f</math> | <math>\iint_{\mathbb{S}}\!\!\!\!\!\!\!\!\!\!\!\!\;\subset\!\supset\mathbf D\cdot\mathrm{d}\mathbf{s} = Q_{f}</math> |
高斯磁定律 | <math>\nabla \cdot \mathbf{B} = 0</math> | <math>\iint_{\mathbb{S}}\!\!\!\!\!\!\!\!\!\!\!\!\;\subset\!\supset\mathbf B\cdot\mathrm{d}\mathbf{s} = 0</math> |
法拉第感應定律 | <math>\nabla \times \mathbf{E} = - \frac{\partial \mathbf{B}} {\partial t}</math> | <math>\oint_{\mathbb{L}}\ \mathbf{E} \cdot \mathrm{d}\boldsymbol{\ell} = - \frac {\mathrm{d} \Phi_\mathbf{B}}{\mathrm{d} t} </math> |
馬克士威-安培定律 | <math>\nabla \times \mathbf{H} = \mathbf{J}_f + \frac{\partial \mathbf{D}} {\partial t}</math> | <math>\oint_{\mathbb{L}}\ \mathbf{H} \cdot \mathrm{d}\boldsymbol{\ell} = I_{f} + \frac {\mathrm{d} \Phi_\mathbf{D}}{\mathrm{d} t}
</math> |