Jamboree/Title and Abstract
From 2013.igem.org
(→Project Abstract and Title) |
Legionella (Talk | contribs) (→Title) |
||
Line 2: | Line 2: | ||
==Title== | ==Title== | ||
- | <b>Project Title: | + | <b>Project Title: A b |
</b> | </b> | ||
Revision as of 13:02, 25 July 2013
Title
Project Title: A b
Abstract
There exist various proteins which sense aromatic components and regulate the transcription of corresponding genes in prokaryotes, for example, Escherichia coli and Pseudomonas putida. However, naturally(natural) existing bio-sensors have various limitations including limited detection range, expression of leakage and low response ratio. This year our team designs a series of aromatic sensors and uses related enzymes in metabolic pathways to increase detectable aromatic compounds. We modify and characterize several existing biosensors. We also design a tunable band-pass gene circuit, which enables E.coli containing certain sensor respond to a specific inductor concentration. Combining the method of gradient dilution, we can measure the concentration of aromatic components in a convenient way. In the long run, these bio-sensors and promoters enrich the inducible device library in synthetic biology.
Project Abstract and Title
Project Title: Aromatics Busted
Project Abstract:
There exist various proteins which sense aromatic components and regulate the transcription of corresponding genes in prokaryotes, for example, Escherichia coli and Pseudomonas putida. However, naturally(natural) existing bio-sensors have various limitations including limited detection range, expression of leakage and low response ratio.
This year our team designs a series of aromatic sensors and uses related enzymes in metabolic pathways to increase detectable aromatic compounds. We modify and characterize several existing biosensors. We also design a tunable band-pass gene circuit, which enables E.coli containing certain sensor respond to a specific inductor concentration. Combining the method of gradient dilution, we can measure the concentration of aromatic components in a convenient way. In the long run, these bio-sensors and promoters enrich the inducible device library in synthetic biology.