Team:KAIST Korea
From 2013.igem.org
(Difference between revisions)
Line 986: | Line 986: | ||
Due to the characteristics of RAPTOR, one of the most useful applications of this technology can be biosynthesis pathway regulation. Programmed crRNA expression allows fine-tuning of target mRNA expression levels and can precisely regulate enzyme concentrations. Not only fine-tuning but multiplex engineering is also possible through simultaneous expression of different crRNAs. Thus, multiple enzymes can be targeted in pathway control. | Due to the characteristics of RAPTOR, one of the most useful applications of this technology can be biosynthesis pathway regulation. Programmed crRNA expression allows fine-tuning of target mRNA expression levels and can precisely regulate enzyme concentrations. Not only fine-tuning but multiplex engineering is also possible through simultaneous expression of different crRNAs. Thus, multiple enzymes can be targeted in pathway control. | ||
As a proof of concept we sought to regulate the lycopene pathway that is incorporated into the genome of Escherichia coli. The efflux of lycopene precursors is optimally reduced through lowering the mRNA levels of enzymes that synthesize non-lycopene end products. Through observation of increased lycopene yield in the E.coli, potentiality of RAPTOR technology can be validated. | As a proof of concept we sought to regulate the lycopene pathway that is incorporated into the genome of Escherichia coli. The efflux of lycopene precursors is optimally reduced through lowering the mRNA levels of enzymes that synthesize non-lycopene end products. Through observation of increased lycopene yield in the E.coli, potentiality of RAPTOR technology can be validated. | ||
- | + | </br></br></span> | |
<div clear='both'></div> | <div clear='both'></div> | ||
Revision as of 12:32, 16 August 2013
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
Team:KAIST Korea/Project Background
From 2012.igem.org
2012 KAIST Korea
Mail : kaist.igem.2012@gmail.com
Twitter : twitter.com/KAIST_iGEM_2012
Facebook : www.facebook.com/KAISTiGEM2012
Project : Overview