Team:Valencia Biocampus
From 2013.igem.org
(→Presentation) |
(→Presentation) |
||
Line 11: | Line 11: | ||
- | Bacteria are essential in biotechnology, but they can hardly move. Nematodes, such as ''Caenorhabditis elegans'', are fast crawling organisms, but they have limited biotechnological applications. By combining the best from both organisms, we present the first artificial synthetic symbiosis with bacteria engineered to ride on worms, which concentrate in hotspots where bacteria perform a desired biotechnological process, such as bioplastic (PHA) production. We have engineered '' | + | Bacteria are essential in biotechnology, but they can hardly move. Nematodes, such as ''Caenorhabditis elegans'', are fast crawling organisms, but they have limited biotechnological applications. By combining the best from both organisms, we present the first artificial synthetic symbiosis with bacteria engineered to ride on worms, which concentrate in hotspots where bacteria perform a desired biotechnological process, such as bioplastic (PHA) production. We have engineered ''Pseudomonas putida'' with a whole operon that allows the formation of a biofilm on the worm. Biofilm formation is switched on and off depending on the media, and thus bacteria get on and off the worm like travellers on a bus. We have also engineered a third partner, ''Escherichia coli'', to express an interference RNA that promotes clumping. Taken together, our artificial symbiosis allows biotechnologically interesting bacteria to travel on nematodes, reach nutrient-rich biomass spots and maximize the efficiency of biotechnological fermentations in heterogenous substrates. |
</div> | </div> |
Revision as of 16:25, 29 August 2013
Presentation
Wormboys in 150 words
Bacteria are essential in biotechnology, but they can hardly move. Nematodes, such as Caenorhabditis elegans, are fast crawling organisms, but they have limited biotechnological applications. By combining the best from both organisms, we present the first artificial synthetic symbiosis with bacteria engineered to ride on worms, which concentrate in hotspots where bacteria perform a desired biotechnological process, such as bioplastic (PHA) production. We have engineered Pseudomonas putida with a whole operon that allows the formation of a biofilm on the worm. Biofilm formation is switched on and off depending on the media, and thus bacteria get on and off the worm like travellers on a bus. We have also engineered a third partner, Escherichia coli, to express an interference RNA that promotes clumping. Taken together, our artificial symbiosis allows biotechnologically interesting bacteria to travel on nematodes, reach nutrient-rich biomass spots and maximize the efficiency of biotechnological fermentations in heterogenous substrates.