Team:Virginia/Project Overview
From 2013.igem.org
The Problem
There has always been public concern over the safety of synthetic biology projects. Many of these concerns result from the possibility that bacteria may replicate or mutate beyond a scientist’s control. Many efforts to increase the biosafety of bacteria chassis have thus focused on engineering more reliable kill-switches or on reducing the expression of certain genes. We present bacterial minicells as a safe, alternative chassis that cannot proliferate (for lack of chromosomal DNA), but that still retain surface proteins from the parent cell and their ability to express plasmid DNA.
This year, Team Virginia sought to develop a safe and modular E. coli delivery-chassis that could be easily incorporated into a variety of other projects, making the many advantages listed above widely available. Our initial investigation led us to a forgotten discovery from the 1950’s—the bacterial minicell. Originally looked into for their potential as safer vaccines, minicell research dwindled over time due to lagging microbiological and genetic technology. While largely neglected for decades, minicells are only now resurfacing, in the wake of the recent, explosive growth of the modern biotechnology industry. As an intermediate between artificially constructed liposomes and live bacteria,a minicell captures the best qualities of both existing platforms, while lacking many of their worst features. Without a doubt, minicells are poised to become a game-changing vehicle for novel therapies.