Team:Imperial College/Industrial Implementation

From 2013.igem.org

Revision as of 22:40, 18 September 2013 by Iain Bower (Talk | contribs)

Contents

Products

Recycling mixed plastic waste will utilise two processes in two joint bioreactors to produce:

Biopolymer poly 3-hydroxybutyrate (P3HB) , resynthesised in the second batch from post-consumer P3HB bioplastic products. Ethylene glycol, produced in the first batch by digesting polyurethane (PUR) and polyethylene terephthalate (PET).

Product description

P3HB is degraded by specialised microorganisms without releasing of toxic products or intermediates. Meanwhile, P3HB has a low water solubility [1] and medium-low water and CO2 permeability [2], as well as very good barrier properties, enabling application in packaging. This biopolymer also has a high degree of crystallinity, high melting temperature [3], and good tensile strength, making it comparable to one of the most common petroplastic isotactic polypropylene [3]. In addition, there are many processing methods for P3HB [4], such as injection molding and extrusion, which are required in manufacture of most plastic products. Although the impact strength is relatively weaker compared to petroplastics, P3HB nanocomposites have shown significantly improved impact strength as well as other properties [3].

Ethylene glycol is a valuable by-product obtained in the process of recycling PUR and PET. Due to the high affinity for water, ethylene glycol has been commercialised for a wide range of uses including desiccant and vaccine manufacture.

Technology

Our waste degradation system is designed to fit with and enhance current waste management practices. One of the main focuses of waste legislation is to move towards a circular economy, where resources in waste are completely reused and nothing is lost. This will minimise the amounts of virgin material we require and also how much we have to dispose of. Mixed wastes are some of the ones which are most difficult to tackle as they require different processes to recycle or recover the different components. A tyoe of mixed waste called solid recovered fuel(SRF) is produced from recycling plant seeking to recover valuable products from waste.

Sourcing

Every year, about 320,000 tonnes solid recovered fuel (SRF) is produced per recycling site in the UK, from where SRF is shipped to other countries for incineration. SRF is a cost to these recycling companies as they pay approximately £65 per tonne for shipping. SRF contains at least 30% plastic. Therefore, we plan to use SRF from the recycling companies as the feedstock, and charge them less than incineration sites.

Market analysis

Market for bioplastics

Plastics represent a large percentage of materials used, as they can be applied in products ranging from water bottles and EE (electrical and electronic) equipments to agricultural mulch film and textiles.

At the present, bioplastics are approximately twice the price of petroplastics, limiting large-scale implement of bioplastics. Although bioplastics count only a small percentage of the total plastics currently, the market for bioplastics is predicted to grow 30% per year [3], and market share is predicted to approach 25%-30% by 2020 [5]. This fast growth rate predominantly come from the increasing price of petroleum and consumer pressure of using greener products.

Competitive comparison

There are existing P3HB producing companies that utilise genetically modified plants or microbes to produce P3HB. However, the technologies they developed cost higher than our technology, as shown in the graph. Plant-based technology cost estimation is based on switchgrass, which shows the highest P3HB production efficiency (3.7% of total dry mass) compared to other plants [6]. Apart from the cost, many other problems are potentially associated with existing technologies. For instance, plant-based technologies require a large growth area, plants have slow growth rate compared to bacteria, and current microbe-based methods demands glucose produced from corn as the feedstock.

References

  1. Terada, M. & Marchessault, R. H. (1999) Determination of solubility parameters for poly(3-hydroxyalkanoates). International Journal of Biological Macromolecules. . 25 (1-3), 207-215.
  2. Miguel, O., FernandezBerridi, M. J. & Iruin, J. J. (1997) Survey on transport properties of liquids, vapors, and gases in biodegradable poly(3-hydroxybutyrate) (PHB).Journal of Applied Polymer Science.. . 64 (9), 1849-1859.
  3. Pilla, S. (2011) Handbook of Bioplastics and Biocomposites Engineering Applications 1st edition. USA, Scrivener Publishing LLC.
  4. EHuang, J. C., Shetty, A. S. & Wang, M. S. (2003) Biodegradable plastics: A review. Advances in Polymer Technology. 10 (1), 23-30.
  5. Helmut Kaiser consultancy. (2010) Bioplastics market worldwide 2010/11-2015-2020-2025. [Online] Hong Kong. Available from http://www.hkc22.com/bioplastics.html. [Accessed: June 2013].
  6. Somleva, M. N., Snell, K. D., Beaulieu, J. J., Peoples, O. P., Garrison, B. R. & Patterson, N. A. (2008) Production of polyhydroxybutyrate in switchgrass, a value-added co-product in an important lignocellulosic biomass crop. Plant Biotechnology Journal.6 (7), 663-678.


Our Sponsors

TueSponsorsEppendorf.png 125px Invitrogen.jpg Geneart.jpg CSynBI.JPG