Team:Shenzhen BGIC ATCG/modeling
From 2013.igem.org
Playing with my eyes
aren't you?
Hi I am Dr. Mage!
A "budding" yeast cell!
Blueprint
Our project based a lot on cell cycle, especially the cyclin-promoters and cyclin-degradation tags. Through modelling Cell cycle is one of the most complex network in biology world. Better understanding of cell cycle and it’s regulation, to some extent, faciliate the fermentation industry because we can easily accelarate or decelarate a cell cycle or even one phase in the cycle which are important for metabolism product synthesis. In order to simulation and predict the experimets of the effeciency of Sic1, alternative splicing and degradation tags in the whole cell cycle, we build tree ordinary differential equation system models.
Cell Cycle
Cell Synchronization
Alternative Splicing by CRISPRi
Degradation Rate
Degradation tags were also obtained from cyclins because cyclins should degrade fast enough to avoid binding to cdc28 and delaying its own phase. From our simulation we can find out that transformed proteins can also be degraded at a convenient speed.
Parameter Table
Parameter |
Rate |
Citation |
D(PEST1) |
0.12 |
Chen et al. (2004) |
D(PEST2) |
0.12 |
Chen et al. (2004) |
D(PEST3) |
0.14 |
Belli, Gari, Aldea, & Herrero, (2001) |
D(D-box) |
Vdb5 = kdb5_p + kdb5_p_p * CDC20 |
Chen et al. (2004) |