Team:Heidelberg/Modelling/Ind Production

From 2013.igem.org

Revision as of 10:45, 27 October 2013 by Ladlung (Talk | contribs)

Indigoidine Production. Quantitative dynamic modeling.

Highlights

  • Suitable model for bacterial growth
  • Proper description of Indigoidine Production
  • Toxicity of Indigoidine synthesis for bacteria
  • Optimized production rates
  • Identifiability analysis
  • ...

Abstract

...

Text under: {{:Team:Heidelberg/Templates/Modelling/Ind-Production}}

Introduction

Based on coupled ordinary differential equations (ODEs). Mathematical modelling allows for Identifiability analysis

Fig. 1 Network graph.
Fig. 2 Experimental data represented by asterisks, model trajectories represented by lines, 95% confidence interval represented by shaded region.
Fig. 3 Internal states.
Fig. 4 Robust parameter estimation.
Fig. 5 Identifiability analysis.

Intro ctd.

Results

The ODE system determining the time evolution of the dynamical variables is given by the following four equations: $$ \mathrm{d}\mathrm{[Bac]}/\mathrm{d}t = -\frac{\mathrm{[Bac]} \cdot \left(\mathrm{[Bac]} - \mathrm{Bacmax\_native\_svp}\right) \cdot \left(\mathrm{beta\_native\_svp} - \mathrm{[Ind]} \cdot \mathrm{ki\_native\_svp}\right)}{\mathrm{Bacmax\_native\_svp}} $$ $$\mathrm{d}\mathrm{[Glu]}/\mathrm{d}t = - \mathrm{[Bac]} \cdot \mathrm{[Glu]} \cdot \mathrm{ksyn\_native\_svp} $$ $$\mathrm{d}\mathrm{[cGlu]}/\mathrm{d}t = - \mathrm{kdim\_native\_svp} \cdot {\mathrm{[cGlu]}}^2 - \mathrm{kdegg\_native\_svp} \cdot \mathrm{[cGlu]} + \mathrm{[Bac]} \cdot \mathrm{[Glu]} \cdot \mathrm{ksyn\_native\_svp} $$ $$\mathrm{d}\mathrm{[Ind]}/\mathrm{d}t = {\mathrm{[cGlu]}}^2 \cdot \mathrm{kdim\_native\_svp} - \mathrm{[Ind]} \cdot \mathrm{kdegi\_native\_svp} $$

Results 1

Results 1.

Discussion

Discussion.


Thanks to