Team:UC-Santa Cruz/Project
From 2013.igem.org
Home | Team | Official Team Profile | Project | Parts Submitted to the Registry | Modeling | Notebook | Safety | Attributions |
---|
Abstract
to save water and make cool bacteria
The world's six billion people are appropriating 54 percent of all the accessible freshwater contained in rivers, lakes and underground aquifers. - See more at: http://www.unwater.org/statistics.html#sthash.JfpKTp6p.dpuf
The total volume of water on Earth is about 1.4 billion km3. The volume of freshwater resources is around 35 million km3, or about 2.5 percent of the total volume. - See more at: http://www.unwater.org/statistics.html#sthash.JfpKTp6p.dpuf
To access this saltwater to accommodate the needs of the global population, many desalination techniques have been developed. The end goal of our project is a bacterial system to directly desalinate seawater using sunlight. The project also aims to provide a scaffold for bacterial manipulation of ionic solutions (ex. heavy metal bioremediation) for other groups.
building a monolayer biofilm to act as a selective membrane. Uses rhodopsins to pump ions in seawater.
Contents |
Project Details
Our project aims to create a microbial desalination system using the bacteria Caulobacter crescentus. This system will use the voltage gradients and light to pump sodium and chloride ions out of saltwater. Caulobacter crescentus has two important properties that we hope to use for our project.
Part 2
The Experiments
-Transfect caulobacter with florescent fusion protein plasmids. -Induce transformed caulobacter to express florescence. -Grow monolayer of caulobacter biofilm. - create tag florescent fusion protien plasmids,transfect into caulobacter, induce, check for polarized florescence. - create pumps/channels/pores tag fusion protien plasmids,transfect into caulobacter, induce, check for polarized florescence.